Tweezer interferometry with NOON states
- URL: http://arxiv.org/abs/2405.08088v2
- Date: Sun, 13 Oct 2024 08:52:43 GMT
- Title: Tweezer interferometry with NOON states
- Authors: Yehoshua Winsten, Doron Cohen, Yoav Sagi,
- Abstract summary: We study the feasibility of using condensed bosons in tweezer interferometry.
We consider a protocol for a tweezer-based NOON state interferometer that includes adiabatic splitting and merging of condensed bosons.
- Score: 3.3972119795940525
- License:
- Abstract: Atomic interferometers measure phase differences along paths with exceptional precision. Tweezer interferometry represents a novel approach for this measurement by guiding particles along predefined trajectories. This study explores the feasibility of using condensed bosons in tweezer interferometry. Unlike the factor $\sqrt{N}$ enhancement expected with classical ensembles, using NOON state interferometry can yield an enhancement by a factor of $N$. We consider a protocol for a tweezer-based NOON state interferometer that includes adiabatic splitting and merging of condensed bosons, followed by adiabatic branching for phase encoding. Our theoretical analysis focuses on the conditions necessary to achieve adiabaticity and avoid spontaneous symmetry breaking. Additionally, we demonstrate the feasibility of the proposed scheme and estimate the time required to perform these sweep processes.
Related papers
- Proposal for a Bose-Einstein condensate based test of Born's rule using light-pulse atom interferometry [0.0]
We benchmark light-pulse atom interferometry with ultra-cold quantum gases to test the modulo-square hypothesis of Born's rule.
Our interferometric protocol is based on a combination of double Bragg and single Raman diffraction to induce multipath interference in Bose-Einstein condensates.
arXiv Detail & Related papers (2024-09-06T10:01:48Z) - Realizing a spatially correlated lattice interferometer [8.81055904289318]
Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision.
Here, we report on realizing a Ramsey-Bord'e interferometer of coherent matter waves dressed by a moving optical lattice in the gravity direction.
Our findings agree well with theoretical simulations, paving the way for high-precision interferometry with ultracold atoms.
arXiv Detail & Related papers (2024-06-24T17:54:03Z) - Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry [41.94295877935867]
We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions.
The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity.
The off-diagonal long-range order is directly reflected in the behavior of the interferometric signal for long interrogation times.
arXiv Detail & Related papers (2023-12-21T15:46:29Z) - Light-Pulse Atom Interferometric Test of Continuous Spontaneous
Localization [0.0]
We derive an exponential loss of the contrast that scales linearly with the interferometer time $T$ if both interferometer arms are spatially separated.
We compare our theoretical results with measurements from a cold rubidium atom interferometer based on counter-propagating two-photon transitions with separation pulse times up to $T$ = 260 ms.
arXiv Detail & Related papers (2022-09-19T08:08:06Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Characterization of an atom interferometer in the quasi-Bragg regime [58.720142291102135]
We focus on an intermediate regime between the Raman-Nath and the Bragg regimes, the so-called quasi-Bragg regime.
The experimental results are in a good agreement with a full numerical integration of the Schr"odinger equation.
arXiv Detail & Related papers (2021-12-06T14:49:45Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Non-linear Bragg trap interferometer [0.0]
We propose a scheme for trapped atom interferometry using an interacting Bose-Einstein condensate.
The condensate is controlled and spatially split in two confined external momentum modes through a series Bragg pulses.
arXiv Detail & Related papers (2020-12-10T16:27:42Z) - Integrable active atom interferometry [0.0]
We use Bethe Ansatz techniques to find exact eigenstates and eigenvalues of the Hamiltonian that models spin-changing collisions.
We study scaling properties and the interferometer's performance under the full Hamiltonian.
arXiv Detail & Related papers (2020-07-26T13:32:37Z) - Interferobot: aligning an optical interferometer by a reinforcement
learning agent [118.43526477102573]
We train an RL agent to align a Mach-Zehnder interferometer, based on images of fringes acquired by a monocular camera.
The agent is trained in a simulated environment, without any hand-coded features or a priori information about the physics.
Thanks to a set of domain randomizations simulating uncertainties in physical measurements, the agent successfully aligns this interferometer without any fine tuning.
arXiv Detail & Related papers (2020-06-03T13:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.