LLM Theory of Mind and Alignment: Opportunities and Risks
- URL: http://arxiv.org/abs/2405.08154v1
- Date: Mon, 13 May 2024 19:52:16 GMT
- Title: LLM Theory of Mind and Alignment: Opportunities and Risks
- Authors: Winnie Street,
- Abstract summary: There is growing interest in whether large language models (LLMs) have theory of mind (ToM)
This paper identifies key areas in which LLM ToM will show up in human:LLM interactions at individual and group levels.
It lays out a broad spectrum of potential implications and suggests the most pressing areas for future research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are transforming human-computer interaction and conceptions of artificial intelligence (AI) with their impressive capacities for conversing and reasoning in natural language. There is growing interest in whether LLMs have theory of mind (ToM); the ability to reason about the mental and emotional states of others that is core to human social intelligence. As LLMs are integrated into the fabric of our personal, professional and social lives and given greater agency to make decisions with real-world consequences, there is a critical need to understand how they can be aligned with human values. ToM seems to be a promising direction of inquiry in this regard. Following the literature on the role and impacts of human ToM, this paper identifies key areas in which LLM ToM will show up in human:LLM interactions at individual and group levels, and what opportunities and risks for alignment are raised in each. On the individual level, the paper considers how LLM ToM might manifest in goal specification, conversational adaptation, empathy and anthropomorphism. On the group level, it considers how LLM ToM might facilitate collective alignment, cooperation or competition, and moral judgement-making. The paper lays out a broad spectrum of potential implications and suggests the most pressing areas for future research.
Related papers
- The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters [67.61587661660852]
Theory-of-Mind (ToM) allows humans to understand and interpret the mental states of others.
In this paper, we verify the importance of understanding long personal backgrounds in ToM.
We assess the performance of machines' ToM capabilities in realistic evaluation scenarios.
arXiv Detail & Related papers (2025-01-03T09:04:45Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants.
This paper presents a framework for investigating psychology dimension in LLMs, including psychological identification, assessment dataset curation, and assessment with results validation.
We introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence.
arXiv Detail & Related papers (2024-06-25T16:09:08Z) - Do LLMs Exhibit Human-Like Reasoning? Evaluating Theory of Mind in LLMs for Open-Ended Responses [11.121931601655174]
Theory of Mind (ToM) reasoning entails recognizing that other individuals possess their own intentions, emotions, and thoughts.
Large language models (LLMs) excel in tasks such as summarization, question answering, and translation.
Despite advancements, the extent to which LLMs truly understand ToM reasoning remains inadequately explored in open-ended scenarios.
arXiv Detail & Related papers (2024-06-09T05:57:59Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
This study investigates the capabilities and risks of Large Language Models (LLMs)
It uses the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand"
Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities.
arXiv Detail & Related papers (2024-03-05T19:40:53Z) - How should the advent of large language models affect the practice of
science? [51.62881233954798]
How should the advent of large language models affect the practice of science?
We have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate.
arXiv Detail & Related papers (2023-12-05T10:45:12Z) - Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits [1.2818275315985972]
We conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM.
We show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
arXiv Detail & Related papers (2023-11-26T08:44:58Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
This study aims to investigate the performance of large language models (LLMs) on different reasoning tasks.
My findings indicate that LLMs excel at analogical and moral reasoning, yet struggle to perform as proficiently on spatial reasoning tasks.
arXiv Detail & Related papers (2023-03-22T22:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.