How should the advent of large language models affect the practice of
science?
- URL: http://arxiv.org/abs/2312.03759v1
- Date: Tue, 5 Dec 2023 10:45:12 GMT
- Title: How should the advent of large language models affect the practice of
science?
- Authors: Marcel Binz, Stephan Alaniz, Adina Roskies, Balazs Aczel, Carl T.
Bergstrom, Colin Allen, Daniel Schad, Dirk Wulff, Jevin D. West, Qiong Zhang,
Richard M. Shiffrin, Samuel J. Gershman, Ven Popov, Emily M. Bender, Marco
Marelli, Matthew M. Botvinick, Zeynep Akata, Eric Schulz
- Abstract summary: How should the advent of large language models affect the practice of science?
We have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate.
- Score: 51.62881233954798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are being increasingly incorporated into
scientific workflows. However, we have yet to fully grasp the implications of
this integration. How should the advent of large language models affect the
practice of science? For this opinion piece, we have invited four diverse
groups of scientists to reflect on this query, sharing their perspectives and
engaging in debate. Schulz et al. make the argument that working with LLMs is
not fundamentally different from working with human collaborators, while Bender
et al. argue that LLMs are often misused and over-hyped, and that their
limitations warrant a focus on more specialized, easily interpretable tools.
Marelli et al. emphasize the importance of transparent attribution and
responsible use of LLMs. Finally, Botvinick and Gershman advocate that humans
should retain responsibility for determining the scientific roadmap. To
facilitate the discussion, the four perspectives are complemented with a
response from each group. By putting these different perspectives in
conversation, we aim to bring attention to important considerations within the
academic community regarding the adoption of LLMs and their impact on both
current and future scientific practices.
Related papers
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
We uncover notable diversity in the ideological stance exhibited across different LLMs and languages.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Student Perspectives on Using a Large Language Model (LLM) for an Assignment on Professional Ethics [0.0]
The advent of Large Language Models (LLMs) started a serious discussion among educators on how they would affect curricula, assessments, and students' competencies.
This report presents an assignment within a course on professional competencies, including some related to ethics, that computing master's students need in their careers.
arXiv Detail & Related papers (2024-04-09T09:03:47Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - How do Large Language Models Navigate Conflicts between Honesty and
Helpfulness? [14.706111954807021]
We use psychological models and experiments designed to characterize human behavior to analyze large language models.
We find that reinforcement learning from human feedback improves both honesty and helpfulness.
GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context.
arXiv Detail & Related papers (2024-02-11T19:13:26Z) - Limits of Large Language Models in Debating Humans [0.0]
Large Language Models (LLMs) have shown remarkable promise in their ability to interact proficiently with humans.
This paper endeavors to test the limits of current-day LLMs with a pre-registered study integrating real people with LLM agents acting as people.
arXiv Detail & Related papers (2024-02-06T03:24:27Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text.
This position paper critically assesses three points recurring in critiques of LLM capacities.
We outline a pragmatic perspective on the issue of real' understanding and intentionality in LLMs.
arXiv Detail & Related papers (2023-10-30T15:51:04Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
This study aims to investigate the performance of large language models (LLMs) on different reasoning tasks.
My findings indicate that LLMs excel at analogical and moral reasoning, yet struggle to perform as proficiently on spatial reasoning tasks.
arXiv Detail & Related papers (2023-03-22T22:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.