論文の概要: Do Bayesian imaging methods report trustworthy probabilities?
- arxiv url: http://arxiv.org/abs/2405.08179v1
- Date: Mon, 13 May 2024 20:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:37:23.377403
- Title: Do Bayesian imaging methods report trustworthy probabilities?
- Title(参考訳): ベイズイメージングは信頼できる確率を報告しているか?
- Authors: David Y. W. Thong, Charlesquin Kemajou Mbakam, Marcelo Pereyra,
- Abstract要約: 我々は,5つの標準ベイズイメージング手法の精度を調査するために,1000GPU時間を要する大規模な実験を行った。
いくつかのケースでは、現代のベイズ画像技術によって報告された確率は、長期的な平均値と広く一致している。
既存のベイズ画像法では、信頼性の高い不確実な定量化結果が得られないのが一般的である。
- 参考スコア(独自算出の注目度): 0.18434042562191813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian statistics is a cornerstone of imaging sciences, underpinning many and varied approaches from Markov random fields to score-based denoising diffusion models. In addition to powerful image estimation methods, the Bayesian paradigm also provides a framework for uncertainty quantification and for using image data as quantitative evidence. These probabilistic capabilities are important for the rigorous interpretation of experimental results and for robust interfacing of quantitative imaging pipelines with scientific and decision-making processes. However, are the probabilities delivered by existing Bayesian imaging methods meaningful under replication of an experiment, or are they only meaningful as subjective measures of belief? This paper presents a Monte Carlo method to explore this question. We then leverage the proposed Monte Carlo method and run a large experiment requiring 1,000 GPU-hours to probe the accuracy of five canonical Bayesian imaging methods that are representative of some of the main Bayesian imaging strategies from the past decades (a score-based denoising diffusion technique, a plug-and-play Langevin algorithm utilising a Lipschitz-regularised DnCNN denoiser, a Bayesian method with a dictionary-based prior trained subject to a log-concavity constraint, an empirical Bayesian method with a total-variation prior, and a hierarchical Bayesian Gibbs sampler based on a Gaussian Markov random field model). We find that, a few cases, the probabilities reported by modern Bayesian imaging techniques are in broad agreement with long-term averages as observed over a large number of replication of an experiment, but existing Bayesian imaging methods are generally not able to deliver reliable uncertainty quantification results.
- Abstract(参考訳): ベイズ統計は画像科学の基盤であり、マルコフのランダム場からスコアに基づくデノナイジング拡散モデルへの多くの様々なアプローチを支えている。
強力な画像推定法に加えて、ベイズパラダイムは不確実性定量化のためのフレームワークも提供し、画像データを定量的証拠として利用する。
これらの確率的能力は、実験結果の厳密な解釈や、定量的画像パイプラインと科学的および決定的プロセスとの堅牢な相互作用のために重要である。
しかし、既存のベイズ画像法によって得られた確率は、実験の複製において意味があるのか、それとも、主観的信念の尺度としてのみ意味があるのか?
本稿では,モンテカルロ法を用いてこの問題を探索する。
次に提案したモンテカルロ法を応用し,過去数十年の主要なベイズ画像戦略の1つである5つの標準ベイズ画像法の精度を1000GPU時間で検証する大規模な実験を行う(スコアベースデノナイジン拡散法,リプシッツ正規化DnCNNデノワザを用いたプラグアンドプレイランゲインアルゴリズム,ログ共振制約を前提とした辞書ベースのベイズ的手法,全変分前の経験的ベイズ的手法,ガウスマルコフ確率場モデルに基づく階層的ベイズ的ギブズサンプリング)。
現代のベイズ画像技術によって報告された確率は、実験の多数の複製で観察された長期平均値と広く一致しているが、既存のベイズ画像法では、信頼性の高い不確実性定量化結果が得られない。
関連論文リスト
- Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior [0.18434042562191813]
本稿では,新しい高効率画像復元手法を提案する。
DDPMデノイザーを経験的ベイズアン・ランゲヴィンアルゴリズムに組み込む。
画像推定精度と計算時間の両方において最先端の戦略を改善する。
論文 参考訳(メタデータ) (2024-09-06T16:20:24Z) - Regularization by denoising: Bayesian model and Langevin-within-split
Gibbs sampling [6.453497703172228]
本稿では,正則化・復号化(RED)パラダイムと相反する確率的手法を導出することにより,画像インバージョンのためのベイズ的枠組みを提案する。
これは、AXDA(Anally exact data augmentation)に基づいて、結果の後方分布からサンプリングするために特別に調整されたモンテカルロアルゴリズムを実装している。
提案アルゴリズムはスプリットギブスサンプリング(SGS)の近似例であり、ランゲヴィン・モンテカルロのステップを埋め込む。
論文 参考訳(メタデータ) (2024-02-19T17:12:16Z) - Equivariant Bootstrapping for Uncertainty Quantification in Imaging
Inverse Problems [0.24475591916185502]
パラメトリックブートストラップアルゴリズムの等価な定式化に基づく新しい不確実性定量化手法を提案する。
提案手法は汎用的であり,任意の画像再構成手法で容易に適用可能である。
提案手法を数値実験および代替不確実性定量化戦略との比較により実証する。
論文 参考訳(メタデータ) (2023-10-18T09:43:15Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
本研究では,凍結モデルに対するベイズIDマッピングを学習し,不確実性の推定を可能にするBayesCapを提案する。
BayesCapは、元のデータセットのごく一部でトレーニングできる、メモリ効率のよいメソッドである。
本稿では,多種多様なアーキテクチャを用いた多種多様なタスクに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-07-14T12:50:09Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
断層撮影は一般的に逆問題である。
本稿では,トモグラフィ逆問題に対する複数の解を求める経験的サンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T20:27:31Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
2つの画像に関連する密度の高い流れ場と、堅牢な画素方向の信頼度マップの推定を目指しています。
フロー予測とその不確実性を共同で学習するフレキシブルな確率的アプローチを開発する。
本手法は,幾何学的マッチングと光フローデータセットに挑戦する最新の結果を得る。
論文 参考訳(メタデータ) (2021-01-05T18:54:11Z) - Tracking disease outbreaks from sparse data with Bayesian inference [55.82986443159948]
新型コロナウイルス(COVID-19)のパンデミックは、感染発生時の感染率を推定する新たな動機を与える。
標準的な手法は、より細かいスケールで共通する部分的な観測可能性とスパースなデータに対応するのに苦労する。
原理的に部分観測可能なベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-12T20:37:33Z) - A deep-learning based Bayesian approach to seismic imaging and
uncertainty quantification [0.4588028371034407]
不確実性は、不条件の逆問題を扱う際に必須である。
未知の知識を正確に符号化する事前分布を定式化することは、しばしば不可能である。
本稿では,無作為な畳み込みニューラルネットワークの機能形式を,前もって暗黙的な構造として利用することを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。