論文の概要: Towards Energy-Aware Federated Learning via MARL: A Dual-Selection Approach for Model and Client
- arxiv url: http://arxiv.org/abs/2405.08183v2
- Date: Tue, 9 Jul 2024 16:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:21:23.716209
- Title: Towards Energy-Aware Federated Learning via MARL: A Dual-Selection Approach for Model and Client
- Title(参考訳): エネルギーを考慮したMARLによるフェデレーション学習に向けて--モデルとクライアントのデュアル選択アプローチ
- Authors: Jun Xia, Yi Zhang, Yiyu Shi,
- Abstract要約: DR-FLという,エネルギーを考慮したフェデレートラーニング(FL)フレームワークを提案する。
DR-FLは、クライアントと異種ディープラーニングモデルの両方のエネルギー制約を考慮し、エネルギー効率のFLを実現する。
Vanilla FL とは異なり,DR-FL は提案した Muti-Agents Reinforcement Learning (MARL) に基づく双対選択方式を採用している。
- 参考スコア(独自算出の注目度): 16.67119399590236
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although Federated Learning (FL) is promising in knowledge sharing for heterogeneous Artificial Intelligence of Thing (AIoT) devices, their training performance and energy efficacy are severely restricted in practical battery-driven scenarios due to the ``wooden barrel effect'' caused by the mismatch between homogeneous model paradigms and heterogeneous device capability. As a result, due to various kinds of differences among devices, it is hard for existing FL methods to conduct training effectively in energy-constrained scenarios, such as battery constraints of devices. To tackle the above issues, we propose an energy-aware FL framework named DR-FL, which considers the energy constraints in both clients and heterogeneous deep learning models to enable energy-efficient FL. Unlike Vanilla FL, DR-FL adopts our proposed Muti-Agents Reinforcement Learning (MARL)-based dual-selection method, which allows participated devices to make contributions to the global model effectively and adaptively based on their computing capabilities and energy capacities in a MARL-based manner. Experiments conducted with various widely recognized datasets demonstrate that DR-FL has the capability to optimize the exchange of knowledge among diverse models in large-scale AIoT systems while adhering to energy limitations. Additionally, it improves the performance of each individual heterogeneous device's model.
- Abstract(参考訳): フェデレートラーニング(FL)は、異種人工知能デバイス(AIoT)の知識共有において有望であるが、同種モデルパラダイムと異種デバイス能力のミスマッチに起因する「木樽効果」により、その訓練性能とエネルギー効率は、実用的なバッテリ駆動シナリオにおいて厳しく制限されている。
その結果, 既存のFL法では, デバイス間の各種の違いから, 電池の制約などエネルギー制約のあるシナリオにおいて, 効果的に訓練を行うことは困難であった。
このような課題に対処するために,クライアントと異種ディープラーニングモデルの両方のエネルギー制約を考慮し,エネルギー効率の高いFLを実現するDR-FLという,エネルギーを意識したFLフレームワークを提案する。
DR-FLは,Vanilla FLとは異なり,MARLをベースとしたMati-Agents Reinforcement Learning(MARL)ベースのデュアル選択方式を採用しており,MARLをベースとした計算能力とエネルギー容量に基づいて,参加者がグローバルモデルに効果的かつ適応的にコントリビューションを行うことができる。
DR-FLは、大規模AIoTシステムにおける多様なモデル間の知識の交換を、エネルギー制限に固執しながら最適化する能力を持つことを示した。
さらに、各異種デバイスモデルの性能も向上する。
関連論文リスト
- Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
フェデレートラーニング(FL)では、エッジデバイスがローカルトレーニングを実行し、パラメータサーバと情報を交換する必要がある。
実用FLシステムにおける重要な課題は、バッテリ限定エッジ装置の急激なエネルギー枯渇である。
FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
論文 参考訳(メタデータ) (2024-05-17T03:41:40Z) - AdaptiveFL: Adaptive Heterogeneous Federated Learning for Resource-Constrained AIoT Systems [25.0282475069725]
Federated Learning (FL)は、AIoT(Artificial Intelligence of Things)デバイス間の協調学習を可能にすることを約束している。
本稿では,新しい幅ワイドモデルプルーニング戦略に基づいて,AdaptiveFLという効果的なFL手法を提案する。
我々は,AdaptiveFLがIIDシナリオと非IIDシナリオの両方に対して最大16.83%の推論改善を達成可能であることを示す。
論文 参考訳(メタデータ) (2023-11-22T05:17:42Z) - Energy-Aware Federated Learning with Distributed User Sampling and
Multichannel ALOHA [3.7769304982979666]
エッジデバイス上での分散学習は、フェデレートラーニング(FL)の出現によって注目を集めている。
本稿では,エネルギ収穫装置(EH)をマルチチャネルALOHAとFLネットワークに統合することを検討する。
数値的な結果は,特に臨界設定において,この手法の有効性を示す。
論文 参考訳(メタデータ) (2023-09-12T08:05:39Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
エネルギーベースモデル(EBM)は通常、異なる特徴の組み合わせを学習し、入力構成ごとにエネルギーマッピングを生成する内部モデルによって構成される。
EBMのほぼ正しい(PAC)理論を拡張し,EBMの性能に及ぼす冗長性低減の影響を解析した。
論文 参考訳(メタデータ) (2023-06-02T12:30:42Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - AnycostFL: Efficient On-Demand Federated Learning over Heterogeneous
Edge Devices [20.52519915112099]
我々はAny CostFLというコスト調整可能なFLフレームワークを提案し、多様なエッジデバイスがローカル更新を効率的に実行できるようにする。
実験結果から,我々の学習フレームワークは,適切なグローバルテスト精度を実現するために,トレーニング遅延とエネルギー消費の最大1.9倍の削減が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-01-08T15:25:55Z) - FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient
Federated Learning [11.093360539563657]
フェデレートラーニング(FL)は、機械学習トレーニングにおけるプライバシリークのリスクに対処するソリューションとして登場した。
我々は,モデル収束を保証しつつ,FLのエネルギー効率を最適化するFedGPOを提案する。
我々の実験では、FedGPOはモデル収束時間を2.4倍改善し、ベースライン設定の3.6倍のエネルギー効率を達成する。
論文 参考訳(メタデータ) (2022-11-30T01:22:57Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。