論文の概要: WaterMamba: Visual State Space Model for Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2405.08419v1
- Date: Tue, 14 May 2024 08:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 14:48:16.150708
- Title: WaterMamba: Visual State Space Model for Underwater Image Enhancement
- Title(参考訳): WaterMamba: 水中画像強調のためのビジュアルステートスペースモデル
- Authors: Meisheng Guan, Haiyong Xu, Gangyi Jiang, Mei Yu, Yeyao Chen, Ting Luo, Yang Song,
- Abstract要約: 水中イメージングは、光の伝播や水中の吸収に影響を及ぼす要因によって、しばしば品質の低下に悩まされる。
画像品質を向上させるため、畳み込みニューラルネットワーク(CNN)とトランスフォーマーに基づく水中画像強調法(UIE)が提案されている。
計算複雑性と高度水中画像劣化を考慮して,UIEの線形計算複雑性を持つ状態空間モデルであるWaterMambaを提案する。
- 参考スコア(独自算出の注目度): 17.172623370407155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater imaging often suffers from low quality due to factors affecting light propagation and absorption in water. To improve image quality, some underwater image enhancement (UIE) methods based on convolutional neural networks (CNN) and Transformer have been proposed. However, CNN-based UIE methods are limited in modeling long-range dependencies, and Transformer-based methods involve a large number of parameters and complex self-attention mechanisms, posing efficiency challenges. Considering computational complexity and severe underwater image degradation, a state space model (SSM) with linear computational complexity for UIE, named WaterMamba, is proposed. We propose spatial-channel omnidirectional selective scan (SCOSS) blocks comprising spatial-channel coordinate omnidirectional selective scan (SCCOSS) modules and a multi-scale feedforward network (MSFFN). The SCOSS block models pixel and channel information flow, addressing dependencies. The MSFFN facilitates information flow adjustment and promotes synchronized operations within SCCOSS modules. Extensive experiments showcase WaterMamba's cutting-edge performance with reduced parameters and computational resources, outperforming state-of-the-art methods on various datasets, validating its effectiveness and generalizability. The code will be released on GitHub after acceptance.
- Abstract(参考訳): 水中イメージングは、光の伝播や水中の吸収に影響を及ぼす要因によって、しばしば品質の低下に悩まされる。
画像品質を向上させるため、畳み込みニューラルネットワーク(CNN)とトランスフォーマーに基づく水中画像強調法(UIE)が提案されている。
しかし、CNNベースのUIEメソッドは長距離依存性のモデリングに限られており、Transformerベースのメソッドには多数のパラメータと複雑な自己認識機構が含まれており、効率の課題が引き起こされている。
計算複雑性と高度水中画像劣化を考慮して,UIEの線形計算複雑性を持つ状態空間モデルであるWaterMambaを提案する。
本研究では,空間チャネル座標全方向選択走査(SCCOSS)モジュールとマルチスケールフィードフォワードネットワーク(MSFFN)からなる空間チャネル全方向選択走査(SCOSS)ブロックを提案する。
SCOSSブロックは、依存に対処するピクセルとチャネル情報の流れをモデル化する。
MSFFNは情報フロー調整を容易にし、SCCOSSモジュール内の同期操作を促進する。
大規模な実験では、パラメータと計算資源を削減したウォーターマンバの最先端のパフォーマンスを示し、様々なデータセット上で最先端の手法より優れ、その有効性と一般化性を検証する。
コードは受け入れた後にGitHubでリリースされる。
関連論文リスト
- O-Mamba: O-shape State-Space Model for Underwater Image Enhancement [7.930262011501752]
マンバ法は画像強調タスクにおいて有望な結果を得た。
O-mamba は O-shaped dual-branch network を用いて、空間情報とチャネル間情報を個別にモデル化する。
ブランチ内でのマルチスケール情報の融合のためのMS-MoE,ブランチ間の空間情報とチャネル情報の相互作用のための相互促進モジュール,循環型マルチスケール最適化戦略。
論文 参考訳(メタデータ) (2024-08-23T03:33:33Z) - Image Deraining with Frequency-Enhanced State Space Model [2.9465623430708905]
本研究では,画像デライニングによる画像デライニングにSSMを導入し,DFSSM(Deraining Frequency-Enhanced State Space Model)を提案する。
我々は,複数のカーネルサイズを持つ畳み込みを用いて,様々なスケールの劣化を効果的に捕捉する,新しい混合スケールゲート畳み込みブロックを開発した。
合成および実世界の雨天画像データセットの実験により,我々の手法が最先端の手法を超越していることが判明した。
論文 参考訳(メタデータ) (2024-05-26T07:45:12Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - CU-Mamba: Selective State Space Models with Channel Learning for Image Restoration [7.292363114816646]
本稿では,二つの状態空間モデルフレームワークをU-Netアーキテクチャに組み込んだChannel-Aware U-Shaped Mambaモデルを紹介する。
実験は、CU-Mambaが既存の最先端手法よりも優れていることを検証する。
論文 参考訳(メタデータ) (2024-04-17T22:02:22Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
VmambaIRは、画像復元タスクに線形に複雑な状態空間モデル(SSM)を導入する。
VmambaIRは、より少ない計算資源とパラメータで最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2024-03-18T02:38:55Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
既存のニューラルイメージ圧縮手法の多くは、空間的冗長性を排除するために、ハイパープライアモデルやコンテキストモデルからのサイド情報に依存している。
近年の自然言語処理と高次視覚のための自己教師付き学習手法におけるマスクサンプリングモデルに着想を得て,ニューラル画像圧縮のための新しい事前学習戦略を提案する。
提案手法は,最先端画像圧縮法と比較して計算複雑性の低い競合性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T06:50:20Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
視覚変換器(ViT)のようなブロック上に,空間適応型特徴変調(SAFM)機構を開発する。
提案法は最先端のSR法よりも3倍程度小さい。
論文 参考訳(メタデータ) (2023-02-27T14:19:31Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
深層畳み込みニューラルネットワーク(CNN)は、過去5年間で低レベルビジョンに広く適用されています。
画像超解像のための非対称ブロック(AB)、mem?ory拡張ブロック(MEB)、高周波数特徴強調ブロック(HFFEB)からなる非対称CNN(ACNet)を提案する。
我々のACNetは、ブラインドノイズの単一画像超解像(SISR)、ブラインドSISR、ブラインドSISRを効果的に処理できる。
論文 参考訳(メタデータ) (2021-03-25T07:10:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。