論文の概要: DGCformer: Deep Graph Clustering Transformer for Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2405.08440v1
- Date: Tue, 14 May 2024 09:01:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 14:38:24.846181
- Title: DGCformer: Deep Graph Clustering Transformer for Multivariate Time Series Forecasting
- Title(参考訳): DGCformer:多変量時系列予測のためのディープグラフクラスタリング変換器
- Authors: Qinshuo Liu, Yanwen Fang, Pengtao Jiang, Guodong Li,
- Abstract要約: 本稿では,多変量時系列予測のためのDeep Graph Clustering Transformer (DGCformer)を提案する。
まず、これらの関連する変数をオートエンコーダと統合されたグラフ畳み込みネットワークでグループ化し、その後、以前のラスタマスクによる自己保持機構を検討する。
- 参考スコア(独自算出の注目度): 16.081071155397186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series forecasting tasks are usually conducted in a channel-dependent (CD) way since it can incorporate more variable-relevant information. However, it may also involve a lot of irrelevant variables, and this even leads to worse performance than the channel-independent (CI) strategy. This paper combines the strengths of both strategies and proposes the Deep Graph Clustering Transformer (DGCformer) for multivariate time series forecasting. Specifically, it first groups these relevant variables by a graph convolutional network integrated with an autoencoder, and a former-latter masked self-attention mechanism is then considered with the CD strategy being applied to each group of variables while the CI one for different groups. Extensive experimental results on eight datasets demonstrate the superiority of our method against state-of-the-art models, and our code will be publicly available upon acceptance.
- Abstract(参考訳): 多変量時系列予測タスクは通常、より可変関連情報を組み込むことができるため、チャンネル依存(CD)方式で行われる。
しかし、これは多くの無関係な変数も含み、チャネル非依存(CI)戦略よりもパフォーマンスが悪くなります。
本稿では,両戦略の長所を組み合わせ,多変量時系列予測のためのディープグラフクラスタリング変換器(DGCformer)を提案する。
具体的には、まずこれらの関連する変数をオートエンコーダと統合されたグラフ畳み込みネットワークでグループ化し、その後、CD戦略を変数群に適用し、CI戦略を異なるグループに適用する。
8つのデータセットに対する大規模な実験結果から,提案手法の最先端モデルに対する優位性が確認された。
関連論文リスト
- Generalized Prompt Tuning: Adapting Frozen Univariate Time Series Foundation Models for Multivariate Healthcare Time Series [3.9599054392856483]
時系列基礎モデルは、大規模なデータセットで事前訓練され、様々なタスクで最先端のパフォーマンスを達成することができる。
我々は、既存の単変量時系列基礎モデルに適応できる、素早いチューニングインスパイアされた微調整技術Gen-P-Tuningを提案する。
2つのMIMIC分類課題とインフルエンザ様疾患予測における各種ベースラインに対する微調整アプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-11-19T19:20:58Z) - DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTSは、一般的な時系列予測において、不整合チャネル進化パターンをモデル化するための調整されたフレームワークである。
本稿では,予測器の状態と入力系列の特性の両方に応じて適応的にルーティング信号を生成する,新しいフォアキャスタ・アウェアゲート(FAG)モジュールを提案する。
論文 参考訳(メタデータ) (2024-10-30T12:46:14Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - VE: Modeling Multivariate Time Series Correlation with Variate Embedding [0.4893345190925178]
現在のチャネル非依存(CI)モデルとCI最終射影層を持つモデルは相関を捉えることができない。
可変埋め込み(VE)パイプラインを提案し,各変数に対して一意かつ一貫した埋め込みを学習する。
VEパイプラインは、CI最終プロジェクション層を持つ任意のモデルに統合して、多変量予測を改善することができる。
論文 参考訳(メタデータ) (2024-09-10T02:49:30Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
本稿では、複雑な時間的ダイナミクスと系列間相関をキャプチャするフレームワークであるForecastGrapherを紹介する。
提案手法は,各系列の時間的変動を反映するカスタムノード埋め込みの生成,系列間の相関関係を符号化する適応的隣接行列の構築,および第3に,ノード特徴分布の多様化によるGNNの表現力の増大という,3つの重要なステップによって支えられている。
論文 参考訳(メタデータ) (2024-05-28T10:40:20Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。