論文の概要: Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.08674v1
- Date: Tue, 14 May 2024 14:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:39:33.681288
- Title: Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models
- Title(参考訳): 拡散モデルに基づく多目的ベイズ最適化
- Authors: Bingdong Li, Zixiang Di, Yongfan Lu, Hong Qian, Feng Wang, Peng Yang, Ke Tang, Aimin Zhou,
- Abstract要約: 多目的ベイズ最適化(MOBO)は、様々な高価な多目的最適化問題(EMOP)において有望な性能を示した。
高価なMOBOのための合成拡散モデルに基づくパレートセット学習アルゴリズム,すなわちCDM-PSLを提案する。
提案アルゴリズムは,様々な最先端MOBOアルゴリズムと比較して優れた性能が得られる。
- 参考スコア(独自算出の注目度): 17.19004913553654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-objective Bayesian optimization (MOBO) has shown promising performance on various expensive multi-objective optimization problems (EMOPs). However, effectively modeling complex distributions of the Pareto optimal solutions is difficult with limited function evaluations. Existing Pareto set learning algorithms may exhibit considerable instability in such expensive scenarios, leading to significant deviations between the obtained solution set and the Pareto set (PS). In this paper, we propose a novel Composite Diffusion Model based Pareto Set Learning algorithm, namely CDM-PSL, for expensive MOBO. CDM-PSL includes both unconditional and conditional diffusion model for generating high-quality samples. Besides, we introduce an information entropy based weighting method to balance different objectives of EMOPs. This method is integrated with the guiding strategy, ensuring that all the objectives are appropriately balanced and given due consideration during the optimization process; Extensive experimental results on both synthetic benchmarks and real-world problems demonstrates that our proposed algorithm attains superior performance compared with various state-of-the-art MOBO algorithms.
- Abstract(参考訳): 多目的ベイズ最適化(MOBO)は、様々な高価な多目的最適化問題(EMOP)において有望な性能を示す。
しかし、パレート最適解の複素分布を効果的にモデル化することは、限定的な関数評価では困難である。
既存のPareto集合学習アルゴリズムは、そのような高価なシナリオにおいてかなりの不安定性を示し、得られた解集合とPareto集合(PS)の間に大きなずれをもたらす可能性がある。
本稿では,高価なMOBOのための合成拡散モデルに基づくパレートセット学習アルゴリズム,すなわちCDM-PSLを提案する。
CDM-PSLは、高品質なサンプルを生成するための条件付き拡散モデルと条件付き拡散モデルの両方を含んでいる。
さらに,情報エントロピーに基づく重み付け手法を導入し,EMOPの異なる目的のバランスをとる。
本手法は, 最適化過程において, 全ての目的が適切にバランスを保ち, 十分に考慮されていることを保証し, 提案手法を組み込むことにより, 提案手法が各種MOBOアルゴリズムよりも優れた性能を示すことを示す。
関連論文リスト
- On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
膨大な多目的最適化問題は、多くの現実世界のアプリケーションで見られる。
本稿では,MOBOのパレート集合全体を近似する学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T09:41:54Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
本稿では,ベイズ的多目的・多忠実度最適化(MOMF)に対する新しいアプローチについて検討する。
複数目的とデータソースの同時最適化を支援するために,信頼度基準の革新的利用を提案する。
本手法はプラズマ物理学や流体力学などの分野におけるシミュレーション問題の解法に適用可能である。
論文 参考訳(メタデータ) (2021-12-27T20:55:26Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
複数目的のブラックボックス最適化の新たな課題を多要素関数評価を用いて検討する。
いくつかの総合的および実世界のベンチマーク問題に対する実験により、MF-OSEMOは両者の近似により、最先端の単一忠実度アルゴリズムよりも大幅に改善されていることが示された。
論文 参考訳(メタデータ) (2020-11-02T06:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。