Pulse-efficient quantum machine learning
- URL: http://arxiv.org/abs/2211.01383v2
- Date: Thu, 5 Oct 2023 10:34:34 GMT
- Title: Pulse-efficient quantum machine learning
- Authors: Andr\'e Melo, Nathan Earnest-Noble, Francesco Tacchino
- Abstract summary: We investigate the impact of pulse-efficient circuits on quantum machine learning algorithms.
We find that pulse-efficient transpilation vastly reduces average circuit durations.
We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning algorithms based on parameterized quantum circuits
are promising candidates for near-term quantum advantage. Although these
algorithms are compatible with the current generation of quantum processors,
device noise limits their performance, for example by inducing an exponential
flattening of loss landscapes. Error suppression schemes such as dynamical
decoupling and Pauli twirling alleviate this issue by reducing noise at the
hardware level. A recent addition to this toolbox of techniques is
pulse-efficient transpilation, which reduces circuit schedule duration by
exploiting hardware-native cross-resonance interaction. In this work, we
investigate the impact of pulse-efficient circuits on near-term algorithms for
quantum machine learning. We report results for two standard experiments:
binary classification on a synthetic dataset with quantum neural networks and
handwritten digit recognition with quantum kernel estimation. In both cases, we
find that pulse-efficient transpilation vastly reduces average circuit
durations and, as a result, significantly improves classification accuracy. We
conclude by applying pulse-efficient transpilation to the Hamiltonian
Variational Ansatz and show that it delays the onset of noise-induced barren
plateaus.
Related papers
- Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
Current quantum programs are mostly compiled on the gate-level, where quantum circuits are composed of quantum gates.
pulse-level optimization has gained more attention from researchers due to their advantages in terms of circuit duration.
We present a hybrid gate-pulse model that can mitigate these problems.
arXiv Detail & Related papers (2022-12-01T17:06:35Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
arXiv Detail & Related papers (2021-12-13T00:49:15Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Scalable error mitigation for noisy quantum circuits produces
competitive expectation values [1.51714450051254]
We show the utility of zero-noise extrapolation for relevant quantum circuits using up to 26 qubits, circuit depths of 60, and 1080 CNOT gates.
We show that the efficacy of the error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition.
arXiv Detail & Related papers (2021-08-20T14:32:16Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.