Using autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfs
- URL: http://arxiv.org/abs/2405.08703v1
- Date: Tue, 14 May 2024 15:42:27 GMT
- Title: Using autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfs
- Authors: P. Mas-Buitrago, A. González-Marcos, E. Solano, V. M. Passegger, M. Cortés-Contreras, J. Ordieres-Meré, A. Bello-García, J. A. Caballero, A. Schweitzer, H. M. Tabernero, D. Montes, C. Cifuentes,
- Abstract summary: We propose a feature-based deep transfer learning (DTL) approach based on autoencoders to determine stellar parameters from high-resolution spectra.
We provide new estimations for the effective temperature, surface gravity, metallicity, and projected rotational velocity for 286 M dwarfs observed by the CARMENES survey.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) techniques are a promising approach among the set of methods used in the ever-challenging determination of stellar parameters in M dwarfs. In this context, transfer learning could play an important role in mitigating uncertainties in the results due to the synthetic gap (i.e. difference in feature distributions between observed and synthetic data). We propose a feature-based deep transfer learning (DTL) approach based on autoencoders to determine stellar parameters from high-resolution spectra. Using this methodology, we provide new estimations for the effective temperature, surface gravity, metallicity, and projected rotational velocity for 286 M dwarfs observed by the CARMENES survey. Using autoencoder architectures, we projected synthetic PHOENIX-ACES spectra and observed CARMENES spectra onto a new feature space of lower dimensionality in which the differences between the two domains are reduced. We used this low-dimensional new feature space as input for a convolutional neural network to obtain the stellar parameter determinations. We performed an extensive analysis of our estimated stellar parameters, ranging from 3050 to 4300 K, 4.7 to 5.1 dex, and -0.53 to 0.25 dex for Teff, logg, and [Fe/H], respectively. Our results are broadly consistent with those of recent studies using CARMENES data, with a systematic deviation in our Teff scale towards hotter values for estimations above 3750 K. Furthermore, our methodology mitigates the deviations in metallicity found in previous DL techniques due to the synthetic gap. We consolidated a DTL-based methodology to determine stellar parameters in M dwarfs from synthetic spectra, with no need for high-quality measurements involved in the knowledge transfer. These results suggest the great potential of DTL to mitigate the differences in feature distributions between the observations and the PHOENIX-ACES spectra.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Machine learning for exoplanet detection in high-contrast spectroscopy Combining cross correlation maps and deep learning on medium-resolution integral-field spectra [0.0]
We develop a new method to leverage the spectral and spatial dimensions in integral-field spectroscopy (IFS) datasets.
We train a supervised deep-learning algorithm to improve the detection sensitivity to high-contrast exoplanets.
We demonstrate that ML techniques have the potential to improve the detection limits and reduce false positives for directly imaged planets.
arXiv Detail & Related papers (2024-05-22T09:25:58Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
Deep-Regularized Ensemble-based Multi-task Learning with Asymmetric Loss for Probabilistic Inference ($rmdeep-REMAP$)
We develop a novel framework that utilizes the rich synthetic spectra from the PHOENIX library and observational data from the MARVELS survey to accurately predict stellar atmospheric parameters.
arXiv Detail & Related papers (2023-11-07T05:41:48Z) - O-type Stars Stellar Parameter Estimation Using Recurrent Neural
Networks [0.0]
In previous work, we compare a set of machine learning and deep learning algorithms in order to establish a reliable way to fit a stellar model.
Here we present the process to estimate individual physical parameters from an artificial neural network perspective.
The development of three different recurrent neural network systems, the training process using stellar spectra models, the test over nine different observed stellar spectra, and the comparison with estimations in previous works are presented.
arXiv Detail & Related papers (2022-10-23T17:18:52Z) - Estimation of stellar atmospheric parameters from LAMOST DR8
low-resolution spectra with 20$\leq$SNR$<$30 [2.514059405625551]
This work studied the ($T_texttteff, logg$, [Fe/H] estimation problem for LAMOST DR8 low-resolution spectra with 20$leq$SNR$$30.
Experiments show that the Mean Absolute Errors (MAE) of $T_texttteff, logg$, [Fe/H] are reduced from the LASP (137.6 K, 0.195 dex, 0.091 dex) to LASSO-MLP (84.32 K, 0.137 dex,
arXiv Detail & Related papers (2022-04-13T11:09:24Z) - Gaussian Process Regression for Absorption Spectra Analysis of Molecular
Dimers [68.8204255655161]
We discuss an approach based on a machine learning technique, where the parameters for the numerical calculations are chosen from Gaussian Process Regression (GPR)
This approach does not only quickly converge to an optimal parameter set, but in addition provides information about the complete parameter space.
We find that indeed the GPR gives reliable results which are in agreement with direct calculations of these parameters using quantum chemical methods.
arXiv Detail & Related papers (2021-12-14T17:46:45Z) - Primordial non-Gaussianity from the Completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey I: Catalogue Preparation and Systematic
Mitigation [3.2855185490071444]
We investigate the large-scale clustering of the final spectroscopic sample of quasars from the recently completed extended Baryon Oscillation Spectroscopic Survey (eBOSS)
We develop a neural network-based approach to mitigate spurious fluctuations in the density field caused by spatial variations in the quality of the imaging data used to select targets for follow-up spectroscopy.
arXiv Detail & Related papers (2021-06-25T16:01:19Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context.
We show the effects of neural network compression in the classification setting and both compression and improved stability training in the generative adversarial training setting.
arXiv Detail & Related papers (2021-03-07T00:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.