Machine learning for exoplanet detection in high-contrast spectroscopy Combining cross correlation maps and deep learning on medium-resolution integral-field spectra
- URL: http://arxiv.org/abs/2405.13468v1
- Date: Wed, 22 May 2024 09:25:58 GMT
- Title: Machine learning for exoplanet detection in high-contrast spectroscopy Combining cross correlation maps and deep learning on medium-resolution integral-field spectra
- Authors: Rakesh Nath-Ranga, Olivier Absil, Valentin Christiaens, Emily O. Garvin,
- Abstract summary: We develop a new method to leverage the spectral and spatial dimensions in integral-field spectroscopy (IFS) datasets.
We train a supervised deep-learning algorithm to improve the detection sensitivity to high-contrast exoplanets.
We demonstrate that ML techniques have the potential to improve the detection limits and reduce false positives for directly imaged planets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advent of high-contrast imaging instruments combined with medium-resolution spectrographs allows spectral and temporal dimensions to be combined with spatial dimensions to detect and potentially characterize exoplanets with higher sensitivity. We develop a new method to effectively leverage the spectral and spatial dimensions in integral-field spectroscopy (IFS) datasets using a supervised deep-learning algorithm to improve the detection sensitivity to high-contrast exoplanets. We begin by applying a data transform whereby the IFS datasets are replaced by cross-correlation coefficient tensors obtained by cross-correlating our data with young gas giant spectral template spectra. This transformed data is then used to train machine learning (ML) algorithms. We train a 2D CNN and 3D LSTM with our data. We compare the ML models with a non-ML algorithm, based on the STIM map of arXiv:1810.06895. We test our algorithms on simulated young gas giants in a dataset that contains no known exoplanet, and explore the sensitivity of algorithms to detect these exoplanets at contrasts ranging from 1e-3 to 1e-4 at different radial separations. We quantify the sensitivity using modified receiver operating characteristic curves (mROC). We discover that the ML algorithms produce fewer false positives and have a higher true positive rate than the STIM-based algorithm, and the true positive rate of ML algorithms is less impacted by changing radial separation. We discover that the velocity dimension is an important differentiating factor. Through this paper, we demonstrate that ML techniques have the potential to improve the detection limits and reduce false positives for directly imaged planets in IFS datasets, after transforming the spectral dimension into a radial velocity dimension through a cross-correlation operation.
Related papers
- Neural Spectral Decomposition for Dataset Distillation [48.59372086450124]
We propose Neural Spectrum Decomposition, a generic decomposition framework for dataset distillation.
We aim to discover the low-rank representation of the entire dataset and perform distillation efficiently.
Our results demonstrate that our approach achieves state-of-the-art performance on benchmarks, including CIFAR10, CIFAR100, Tiny Imagenet, and ImageNet Subset.
arXiv Detail & Related papers (2024-08-29T03:26:14Z) - Empowering Snapshot Compressive Imaging: Spatial-Spectral State Space Model with Across-Scanning and Local Enhancement [51.557804095896174]
We introduce a State Space Model with Across-Scanning and Local Enhancement, named ASLE-SSM, that employs a Spatial-Spectral SSM for global-local balanced context encoding and cross-channel interaction promoting.
Experimental results illustrate ASLE-SSM's superiority over existing state-of-the-art methods, with an inference speed 2.4 times faster than Transformer-based MST and saving 0.12 (M) of parameters.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - Combining multi-spectral data with statistical and deep-learning models
for improved exoplanet detection in direct imaging at high contrast [39.90150176899222]
Exoplanet signals can only be identified when combining several observations with dedicated detection algorithms.
We learn a model of the spatial, temporal and spectral characteristics of the nuisance, directly from the observations.
A convolutional neural network (CNN) is then trained in a supervised fashion to detect the residual signature of synthetic sources.
arXiv Detail & Related papers (2023-06-21T13:42:07Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
We introduce a new methodology for dimensionality reduction and classification of hyperspectral images.
We take into account both spectral and spatial information based on mutual information.
Experiments are performed on three well-known hyperspectral benchmark datasets.
arXiv Detail & Related papers (2022-11-01T13:19:08Z) - Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [0.10752246796855561]
We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters.
We demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
arXiv Detail & Related papers (2022-10-04T12:09:57Z) - Multilevel orthogonal Bochner function subspaces with applications to
robust machine learning [1.533771872970755]
We consider the data as instances of a random field within a relevant Bochner space.
Our key observation is that the classes can predominantly reside in two distinct subspaces.
arXiv Detail & Related papers (2021-10-04T22:01:01Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.