論文の概要: Jacobian Regularizer-based Neural Granger Causality
- arxiv url: http://arxiv.org/abs/2405.08779v1
- Date: Tue, 14 May 2024 17:13:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:18:28.166079
- Title: Jacobian Regularizer-based Neural Granger Causality
- Title(参考訳): Jacobian Regularizer-based Neural Granger Causality
- Authors: Wanqi Zhou, Shuanghao Bai, Shujian Yu, Qibin Zhao, Badong Chen,
- Abstract要約: 本稿では,ヤコビアン正規化器を用いたニューラルグラガー因果性(JRNGC)アプローチを提案する。
提案手法は,入力出力ヤコビ行列正規化器を利用して重みの空間的制約を解消する。
提案手法は,現在最先端の手法を用いて,グラガー因果関係とフルタイムグラガー因果関係を学習する上での競合性能を実現する。
- 参考スコア(独自算出の注目度): 45.902407376192656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of neural networks, diverse methods for neural Granger causality have emerged, which demonstrate proficiency in handling complex data, and nonlinear relationships. However, the existing framework of neural Granger causality has several limitations. It requires the construction of separate predictive models for each target variable, and the relationship depends on the sparsity on the weights of the first layer, resulting in challenges in effectively modeling complex relationships between variables as well as unsatisfied estimation accuracy of Granger causality. Moreover, most of them cannot grasp full-time Granger causality. To address these drawbacks, we propose a Jacobian Regularizer-based Neural Granger Causality (JRNGC) approach, a straightforward yet highly effective method for learning multivariate summary Granger causality and full-time Granger causality by constructing a single model for all target variables. Specifically, our method eliminates the sparsity constraints of weights by leveraging an input-output Jacobian matrix regularizer, which can be subsequently represented as the weighted causal matrix in the post-hoc analysis. Extensive experiments show that our proposed approach achieves competitive performance with the state-of-the-art methods for learning summary Granger causality and full-time Granger causality while maintaining lower model complexity and high scalability.
- Abstract(参考訳): ニューラルネットワークの進歩に伴い、複雑なデータを扱う能力と非線形関係を示す多様な神経グランガー因果関係の手法が出現した。
しかし、既存の神経グランガー因果関係の枠組みにはいくつかの制限がある。
対象変数毎に別々の予測モデルを構築する必要があり、その関係は第1層の重みの間隔に依存するため、変数間の複雑な関係を効果的にモデル化し、グラガー因果関係の未満足な推定精度を効果的にモデル化する上での課題となる。
さらに、多くはフルタイムのグランガー因果関係を把握できない。
これらの欠点に対処するため,Jacobian Regularizer-based Neural Granger Causality (JRNGC) アプローチを提案する。
具体的には,入力出力ヤコビ行列正規化器を用いて重みの空間的制約を除去し,その後,重み付き因果行列としてポストホック解析で表すことができる。
実験の結果,提案手法は,モデル複雑性の低減とスケーラビリティの向上を両立させながら,Granger因果関係とフルタイムGranger因果関係を学習するための最先端手法との競合性能を実現していることがわかった。
関連論文リスト
- Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data [21.697069894721448]
本研究では,Granger因果構造を推定し,異種干渉時系列データを活用することによって未知のターゲットを同定する理論的基礎的手法を提案する。
本手法は,介入時系列データからGranger因果構造を学習する上で,いくつかの頑健なベースライン法より優れている。
論文 参考訳(メタデータ) (2024-06-14T21:36:00Z) - Learning Granger Causality from Instance-wise Self-attentive Hawkes
Processes [24.956802640469554]
インスタンスワイド・セルフアテンティブ・ホークス・プロセス(ISAHP)は、インスタンスレベルでGranger因果関係を直接推測できる新しいディープラーニングフレームワークである。
ISAHPは、古典的なモデルでは扱えない複雑なインスタンスレベルの因果構造を発見することができる。
論文 参考訳(メタデータ) (2024-02-06T05:46:51Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Nonlinear Permuted Granger Causality [0.6526824510982799]
グランガー因果推論(Granger causal inference)は、経済学から神経科学まで幅広い分野において用いられる、論争的だが広範な手法である。
サンプル外比較を可能にするために、共変集合の置換を用いて関数接続の尺度を明示的に定義する。
変分法の性能を, シミュレーションによる変分選択, ナイーブ置換, 省略技術と比較した。
論文 参考訳(メタデータ) (2023-08-11T16:44:16Z) - ER: Equivariance Regularizer for Knowledge Graph Completion [107.51609402963072]
我々は、新しい正規化器、すなわち等分散正規化器(ER)を提案する。
ERは、頭と尾のエンティティ間の意味的等価性を利用することで、モデルの一般化能力を高めることができる。
実験結果から,最先端関係予測法よりも明確かつ実質的な改善が示された。
論文 参考訳(メタデータ) (2022-06-24T08:18:05Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
本稿では,非線形なGranger因果関係をモデル化するためのディープラーニングに基づくアプローチを提案する。
我々は,非線形時系列におけるモデル性能を実演し,その要因と効果を異なる時間ラグで示す。
論文 参考訳(メタデータ) (2022-02-23T03:26:22Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Inductive Granger Causal Modeling for Multivariate Time Series [49.29373497269468]
Inductive GRanger cAusal Modeling (InGRA) framework for inductive Granger causality learning and common causal structure detection。
特に,Granger causal attentionと呼ばれる新しい注意機構を通じて,異なるGranger causal Structureを持つ個人に対して,グローバルモデル1つを訓練する。
このモデルは、異なる個体の共通因果構造を検出し、新しく到着した個体のグランガー因果構造を推定することができる。
論文 参考訳(メタデータ) (2021-02-10T07:48:00Z) - Interpretable Models for Granger Causality Using Self-explaining Neural
Networks [4.56877715768796]
本論文では,自己記述型ニューラルネットワークの拡張に基づく非線形ダイナミクス下でのGranger因果関係を推定するための新しいフレームワークを提案する。
このフレームワークは、Granger因果関係を推測する他のニューラルネットワークベースのテクニックよりも解釈可能である。
論文 参考訳(メタデータ) (2021-01-19T12:59:00Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。