論文の概要: Gradient Regularization-based Neural Granger Causality
- arxiv url: http://arxiv.org/abs/2507.11178v1
- Date: Tue, 15 Jul 2025 10:35:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.077502
- Title: Gradient Regularization-based Neural Granger Causality
- Title(参考訳): 勾配正規化に基づくニューラルグランガー因果性
- Authors: Meiliang Liu, Huiwen Dong, Xiaoxiao Yang, Yunfang Xu, Zijin Li, Zhengye Si, Xinyue Yang, Zhiwen Zhao,
- Abstract要約: グラディエント正規化に基づくニューラルグラガー因果性(GRNGC)を提案する。
GRNGCは1つの時系列予測モデルのみを必要とし、モデルの入力と出力の勾配に$L_1$正規化を適用して、グランガー因果関係を推測する。
DREAM、Lorenz-96、fMRI、CausalTimeの数値シミュレーションにより、GRNGCは既存のベースラインよりも優れ、計算オーバーヘッドを大幅に削減することが示された。
- 参考スコア(独自算出の注目度): 1.7365653221505928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancement of deep learning technologies, various neural network-based Granger causality models have been proposed. Although these models have demonstrated notable improvements, several limitations remain. Most existing approaches adopt the component-wise architecture, necessitating the construction of a separate model for each time series, which results in substantial computational costs. In addition, imposing the sparsity-inducing penalty on the first-layer weights of the neural network to extract causal relationships weakens the model's ability to capture complex interactions. To address these limitations, we propose Gradient Regularization-based Neural Granger Causality (GRNGC), which requires only one time series prediction model and applies $L_{1}$ regularization to the gradient between model's input and output to infer Granger causality. Moreover, GRNGC is not tied to a specific time series forecasting model and can be implemented with diverse architectures such as KAN, MLP, and LSTM, offering enhanced flexibility. Numerical simulations on DREAM, Lorenz-96, fMRI BOLD, and CausalTime show that GRNGC outperforms existing baselines and significantly reduces computational overhead. Meanwhile, experiments on real-world DNA, Yeast, HeLa, and bladder urothelial carcinoma datasets further validate the model's effectiveness in reconstructing gene regulatory networks.
- Abstract(参考訳): ディープラーニング技術の進歩により、様々なニューラルネットワークに基づくGranger因果モデルが提案されている。
これらのモデルは顕著な改善を示しているが、いくつかの制限が残っている。
既存のアプローチの多くはコンポーネントアーキテクチャを採用しており、各時系列ごとに別々のモデルを構築する必要がある。
さらに、ニューラルネットワークの第1層の重みに疎結合によるペナルティを課し、因果関係を抽出することで、複雑な相互作用をキャプチャするモデルの能力を弱める。
これらの制約に対処するため、グラディエント正規化に基づくニューラルグランガー因果関係(GRNGC)を提案し、これは1つの時系列予測モデルしか必要とせず、モデルの入力と出力の勾配に$L_{1}$正規化を適用してグランガー因果関係を推定する。
さらに、GRNGCは特定の時系列予測モデルとは結びついておらず、kan、MLP、LSTMといった様々なアーキテクチャで実装でき、柔軟性が向上している。
DREAM、Lorenz-96、fMRI BOLD、CausalTimeの数値シミュレーションでは、GRNGCは既存のベースラインよりも優れ、計算オーバーヘッドを大幅に削減している。
一方、現実のDNA、酵母、HeLa、膀胱上皮癌のデータセットに関する実験は、遺伝子制御ネットワークの再構築におけるモデルの有効性をさらに検証している。
関連論文リスト
- Jacobian Regularizer-based Neural Granger Causality [45.902407376192656]
本稿では,ヤコビアン正規化器を用いたニューラルグラガー因果性(JRNGC)アプローチを提案する。
提案手法は,入力出力ヤコビ行列正規化器を利用して重みの空間的制約を解消する。
提案手法は,現在最先端の手法を用いて,グラガー因果関係とフルタイムグラガー因果関係を学習する上での競合性能を実現する。
論文 参考訳(メタデータ) (2024-05-14T17:13:50Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Learning CO$_2$ plume migration in faulted reservoirs with Graph Neural
Networks [0.3914676152740142]
我々は,CO$$ plumeマイグレーションに対する断層の影響を捉えるグラフベースのニューラルモデルを開発した。
本研究では, 断層を有する合成貯留層において, ガス飽和度と細孔圧力の経時的変化を正確に予測できることを実証した。
この研究は、複雑な断層と破壊を伴う地下流れを正確にかつ迅速にモデル化するためのGNNベースの手法の可能性を強調している。
論文 参考訳(メタデータ) (2023-06-16T06:47:47Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
本稿では,Gibs-Duhem-informed Neural Network を用いて,様々な組成における二成分活性係数の予測を行う。
ニューラルネットワークの学習における損失関数にギブス・デュヘム方程式を明示的に含んでいる。
論文 参考訳(メタデータ) (2023-05-31T07:36:45Z) - A Momentum-Incorporated Non-Negative Latent Factorization of Tensors
Model for Dynamic Network Representation [0.0]
大規模動的ネットワーク (LDN) は、多くのビッグデータ関連アプリケーションにおけるデータソースである。
テンソル(LFT)モデルの潜在因子化は、この時間パターンを効率的に抽出する。
勾配降下(SGD)解法に基づくLFTモデルは、トレーニングスキームによって制限されることが多く、尾収束が弱い。
本稿では,運動量付きSGDに基づく非線形LFTモデル(MNNL)を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:30:53Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Deep Recurrent Modelling of Granger Causality with Latent Confounding [0.0]
本稿では,非線形なGranger因果関係をモデル化するためのディープラーニングに基づくアプローチを提案する。
我々は,非線形時系列におけるモデル性能を実演し,その要因と効果を異なる時間ラグで示す。
論文 参考訳(メタデータ) (2022-02-23T03:26:22Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。