Prospects of Privacy Advantage in Quantum Machine Learning
- URL: http://arxiv.org/abs/2405.08801v2
- Date: Wed, 15 May 2024 17:46:34 GMT
- Title: Prospects of Privacy Advantage in Quantum Machine Learning
- Authors: Jamie Heredge, Niraj Kumar, Dylan Herman, Shouvanik Chakrabarti, Romina Yalovetzky, Shree Hari Sureshbabu, Changhao Li, Marco Pistoia,
- Abstract summary: This study is motivated by the increasing success of recovering input data from the gradients of classical models.
We uncover the crucial role played by the Lie algebra (DLA) of the VQC ansatz in determining privacy vulnerabilities.
- Score: 3.7592122147132767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring data privacy in machine learning models is critical, particularly in distributed settings where model gradients are typically shared among multiple parties to allow collaborative learning. Motivated by the increasing success of recovering input data from the gradients of classical models, this study addresses a central question: How hard is it to recover the input data from the gradients of quantum machine learning models? Focusing on variational quantum circuits (VQC) as learning models, we uncover the crucial role played by the dynamical Lie algebra (DLA) of the VQC ansatz in determining privacy vulnerabilities. While the DLA has previously been linked to the classical simulatability and trainability of VQC models, this work, for the first time, establishes its connection to the privacy of VQC models. In particular, we show that properties conducive to the trainability of VQCs, such as a polynomial-sized DLA, also facilitate the extraction of detailed snapshots of the input. We term this a weak privacy breach, as the snapshots enable training VQC models for distinct learning tasks without direct access to the original input. Further, we investigate the conditions for a strong privacy breach where the original input data can be recovered from these snapshots by classical or quantum-assisted polynomial time methods. We establish conditions on the encoding map such as classical simulatability, overlap with DLA basis, and its Fourier frequency characteristics that enable such a privacy breach of VQC models. Our findings thus play a crucial role in detailing the prospects of quantum privacy advantage by guiding the requirements for designing quantum machine learning models that balance trainability with robust privacy protection.
Related papers
- Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
Quantum machine learning (QML) is a category of algorithms that employ variational quantum circuits (VQCs) to tackle machine learning tasks.
Recent discoveries have shown that QML models can effectively generalize from limited training data samples.
QML represents a hybrid model that utilizes both classical and quantum computing resources.
arXiv Detail & Related papers (2024-08-18T18:21:24Z) - RQP-SGD: Differential Private Machine Learning through Noisy SGD and
Randomized Quantization [8.04975023021212]
We present RQP-SGD, a new approach for privacy-preserving quantization to train machine learning models.
This approach combines differentially private gradient descent with randomized quantization, providing a measurable privacy guarantee.
arXiv Detail & Related papers (2024-02-09T18:34:08Z) - Privacy Side Channels in Machine Learning Systems [87.53240071195168]
We introduce privacy side channels: attacks that exploit system-level components to extract private information.
For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees.
We further show that systems which block language models from regenerating training data can be exploited to exfiltrate private keys contained in the training set.
arXiv Detail & Related papers (2023-09-11T16:49:05Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Q-LSTM Language Model -- Decentralized Quantum Multilingual Pre-Trained
Language Model for Privacy Protection [6.0038761646405225]
Large-scale language models are trained on a massive amount of natural language data that might encode or reflect our private information.
malicious agents can reverse engineer the training data even if data sanitation and differential privacy algorithms were involved in the pre-training process.
We propose a decentralized training framework to address privacy concerns in training large-scale language models.
arXiv Detail & Related papers (2022-10-06T21:29:17Z) - Joint Privacy Enhancement and Quantization in Federated Learning [23.36363480217293]
Federated learning (FL) is an emerging paradigm for training machine learning models using possibly private data available at edge devices.
We propose a method coined joint privacy enhancement and quantization (JoPEQ)
We show that JoPEQ simultaneously quantizes data according to a required bit-rate while holding a desired privacy level.
arXiv Detail & Related papers (2022-08-23T11:42:58Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - Quantum machine learning with differential privacy [3.2442879131520126]
We develop a hybrid quantum-classical model that is trained to preserve privacy using differentially private optimization algorithm.
Experiments demonstrate that differentially private QML can protect user-sensitive information without diminishing model accuracy.
arXiv Detail & Related papers (2021-03-10T18:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.