Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions
- URL: http://arxiv.org/abs/2405.08983v1
- Date: Tue, 14 May 2024 22:34:59 GMT
- Title: Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions
- Authors: Thomas Sayer, Andrés Montoya-Castillo,
- Abstract summary: Multitime quantum correlation functions are central objects in physical science.
Experiments such as 2D spectroscopy and quantum control can now measure such quantities.
We show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve the accuracy of coarse mean-field Ehrenfest dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multitime quantum correlation functions are central objects in physical science, offering a direct link between experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system's complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Modeling Stochastic Chemical Kinetics on Quantum Computers [0.0]
We show how quantum algorithms can be employed to model chemical kinetics using the Schl"ogl Model of a trimolecular reaction network.
Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode.
arXiv Detail & Related papers (2024-04-12T18:53:38Z) - Efficient formulation of multitime generalized quantum master equations:
Taming the cost of simulating 2D spectra [0.0]
We present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework.
Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori-Nakajima-Zwanzig framework.
We are also able to decompose the spectra into 1-, 2-, and 3-time correlations, showing how and when the system enters a Markovian regime.
arXiv Detail & Related papers (2023-10-30T21:16:04Z) - Mixed Quantum-Classical Dynamics for Near Term Quantum Computers [0.0]
Mixed quantum-classical dynamics is often used to understand systems too complex to treat fully quantum mechanically.
We present a modular algorithm for general mixed quantum-classical dynamics where the quantum subsystem is coupled with the classical subsystem.
arXiv Detail & Related papers (2023-03-20T18:23:15Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Dynamics in an exact solvable quantum magnet: benchmark for quantum
computer [2.643309520855375]
We explore the dynamic behavior of 2D large-scale ferromagnetic J1-J2 Heisenberg model both theoretically and experimentally.
A quantum walk experiment is designed and conducted on the basis of IBM programmable quantum processors.
arXiv Detail & Related papers (2021-09-23T13:32:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Variational classical networks for dynamics in interacting quantum
matter [0.0]
We introduce a variational class of wavefunctions based on complex networks of classical spins akin to artificial neural networks.
We show that our method can be applied to any quantum many-body system with a well-defined classical limit.
arXiv Detail & Related papers (2020-07-31T14:03:37Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.