Short-time simulation of quantum dynamics by Pauli measurements
- URL: http://arxiv.org/abs/2412.08719v1
- Date: Wed, 11 Dec 2024 19:00:03 GMT
- Title: Short-time simulation of quantum dynamics by Pauli measurements
- Authors: Paul K. Faehrmann, Jens Eisert, Maria Kieferova, Richard Kueng,
- Abstract summary: We propose leveraging the power of measurements to simulate short-time quantum dynamics of physically prepared quantum states in classical post-processing.
While limited to short simulation times, our hybrid quantum-classical method is equipped with rigorous error bounds.
- Score: 0.889510329047858
- License:
- Abstract: Simulating the dynamics of complex quantum systems is a central application of quantum devices. Here, we propose leveraging the power of measurements to simulate short-time quantum dynamics of physically prepared quantum states in classical post-processing using a truncated Taylor series approach. While limited to short simulation times, our hybrid quantum-classical method is equipped with rigorous error bounds. It is extendable to estimate low-order Taylor approximations of smooth, time-dependent functions of tractable linear combinations of measurable operators. These insights can be made use of in the context of Hamiltonian learning and device verification, short-time imaginary time evolution, or the application of intractable operations to sub-universal quantum simulators in classical post-processing.
Related papers
- Quantum Simulation for Dynamical Transition Rates in Open Quantum Systems [0.0]
We introduce a novel and efficient quantum simulation method to compute dynamical transition rates in Markovian open quantum systems.
Our new approach holds the potential to surpass the bottlenecks of current quantum chemical research.
arXiv Detail & Related papers (2024-12-23T02:53:05Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - Quantum simulations of time-dependent Hamiltonians beyond the
quasi-static approximation [0.0]
existing approaches to analogue quantum simulations of time-dependent quantum systems rely on perturbative corrections to quantum simulations of time-independent quantum systems.
We overcome this restriction to perturbative treatments with an approach based on flow equations and a multi-mode Fourier expansion.
The potential of the quantum simulations that can be achieved with our approach is demonstrated with the pedagogical example of a Lambda-system and the quench in finite time through a quantum phase transition of a Chern insulator in a driven non-interacting Hubbard system.
arXiv Detail & Related papers (2023-05-26T17:12:19Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.