RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing
- URL: http://arxiv.org/abs/2405.09083v1
- Date: Wed, 15 May 2024 04:22:27 GMT
- Title: RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing
- Authors: Jiamei Xiong, Xuefeng Yan, Yongzhen Wang, Wei Zhao, Xiao-Ping Zhang, Mingqiang Wei,
- Abstract summary: Haze severely degrades the visual quality of remote sensing images.
We propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff.
Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff.
- Score: 32.16602874389847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Haze severely degrades the visual quality of remote sensing images and hampers the performance of automotive navigation, intelligent monitoring, and urban management. The emerging denoising diffusion probabilistic model (DDPM) exhibits the significant potential for dense haze removal with its strong generation ability. Since remote sensing images contain extensive small-scale texture structures, it is important to effectively restore image details from hazy images. However, current wisdom of DDPM fails to preserve image details and color fidelity well, limiting its dehazing capacity for remote sensing images. In this paper, we propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff. From a new perspective, RSHazeDiff explores the conditional DDPM to improve image quality in dense hazy scenarios, and it makes three key contributions. First, RSHazeDiff refines the training phase of diffusion process by performing noise estimation and reconstruction constraints in a coarse-to-fine fashion. Thus, it remedies the unpleasing results caused by the simple noise estimation constraint in DDPM. Second, by taking the frequency information as important prior knowledge during iterative sampling steps, RSHazeDiff can preserve more texture details and color fidelity in dehazed images. Third, we design a global compensated learning module to utilize the Fourier transform to capture the global dependency features of input images, which can effectively mitigate the effects of boundary artifacts when processing fixed-size patches. Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff over multiple state-of-the-art methods. Source code will be released at https://github.com/jm-xiong/RSHazeDiff.
Related papers
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing
Image Super-Resolution [32.956539422513416]
convolutional networks have achieved remarkable development in remote sensing image Super-Resoltuion (SR)
Generative adversarial networks have the potential to infer intricate details, but they are easy to collapse, resulting in undesirable artifacts.
EDiffSR is easy to train and maintains the merits of DPM in generating perceptual-pleasant images.
arXiv Detail & Related papers (2023-10-30T06:09:33Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
arXiv Detail & Related papers (2023-08-21T06:50:44Z) - Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration [39.071637725773314]
We propose a coarse-to-fine diffusion Transformer (C2F-DFT) for image restoration.
C2F-DFT contains diffusion self-attention (DFSA) and diffusion feed-forward network (DFN)
In the coarse training stage, our C2F-DFT estimates noises and then generates the final clean image by a sampling algorithm.
arXiv Detail & Related papers (2023-08-17T01:59:59Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - FD-GAN: Generative Adversarial Networks with Fusion-discriminator for
Single Image Dehazing [48.65974971543703]
We propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing.
Our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts.
Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images.
arXiv Detail & Related papers (2020-01-20T04:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.