論文の概要: Motion Prediction with Gaussian Processes for Safe Human-Robot Interaction in Virtual Environments
- arxiv url: http://arxiv.org/abs/2405.09109v1
- Date: Wed, 15 May 2024 05:51:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:16:04.855871
- Title: Motion Prediction with Gaussian Processes for Safe Human-Robot Interaction in Virtual Environments
- Title(参考訳): 仮想環境における安全な人間-ロボットインタラクションのためのガウス過程による動作予測
- Authors: Stanley Mugisha, Vamsi Krishna Guda, Christine Chevallereau, Damien Chablat, Matteo Zoppi,
- Abstract要約: 衝突事故のリスクを最小限に抑えるため、共同作業型ロボットは人間との共同作業が安全でなければならない。
本研究の目的は,協調作業ロボットの安全性を向上しつつ,協調作業ロボットの効率を向上させることである。
- 参考スコア(独自算出の注目度): 1.677718351174347
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Humans use collaborative robots as tools for accomplishing various tasks. The interaction between humans and robots happens in tight shared workspaces. However, these machines must be safe to operate alongside humans to minimize the risk of accidental collisions. Ensuring safety imposes many constraints, such as reduced torque and velocity limits during operation, thus increasing the time to accomplish many tasks. However, for applications such as using collaborative robots as haptic interfaces with intermittent contacts for virtual reality applications, speed limitations result in poor user experiences. This research aims to improve the efficiency of a collaborative robot while improving the safety of the human user. We used Gaussian process models to predict human hand motion and developed strategies for human intention detection based on hand motion and gaze to improve the time for the robot and human security in a virtual environment. We then studied the effect of prediction. Results from comparisons show that the prediction models improved the robot time by 3\% and safety by 17\%. When used alongside gaze, prediction with Gaussian process models resulted in an improvement of the robot time by 2\% and the safety by 13\%.
- Abstract(参考訳): 人間は様々なタスクを達成するためのツールとして協調ロボットを使用する。
人間とロボットの相互作用は、密接な共有ワークスペースで行われる。
しかし、これらの機械は事故による衝突のリスクを最小限に抑えるため、人間と共同で運用するには安全でなければならない。
安全を確保するには、動作中のトルクの減少や速度制限といった多くの制約が課されるため、多くのタスクを達成するための時間が増加する。
しかし、仮想現実アプリケーションのための間欠的な接触を伴う触覚インターフェースとして協調ロボットを使用するようなアプリケーションでは、速度制限がユーザエクスペリエンスの低下をもたらす。
本研究の目的は,協調作業ロボットの安全性を向上しつつ,協調作業ロボットの効率を向上させることである。
ガウス過程モデルを用いて人間の手の動きを予測し、手の動きと視線に基づく人間の意図検出のための戦略を開発し、仮想環境におけるロボットの時間と人間の安全を改善する。
その後、予測の効果を研究した。
比較の結果,予測モデルはロボットの時間を3倍に改善し,安全性を17倍に改善した。
視線とともに使用すると、ガウスのプロセスモデルによる予測により、ロボットの時間は2\%改善され、安全性は13\%向上した。
関連論文リスト
- Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
柔軟な生産シナリオでは、ロボットとの直接の物理的相互作用がますます重要になっている。
リスクポテンシャルを低く抑えるため、物理的な接触がある場合や安全距離に違反する場合など、比較的簡単な操作措置が定められている。
この研究はDeep Metric Learning(DML)アプローチを用いて、非接触ロボットの動き、物理的人間とロボットの相互作用を目的とした意図的な接触、衝突状況の区別を行う。
論文 参考訳(メタデータ) (2023-02-23T11:26:51Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。