論文の概要: OpenGait: A Comprehensive Benchmark Study for Gait Recognition towards Better Practicality
- arxiv url: http://arxiv.org/abs/2405.09138v1
- Date: Wed, 15 May 2024 07:11:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:06:01.311502
- Title: OpenGait: A Comprehensive Benchmark Study for Gait Recognition towards Better Practicality
- Title(参考訳): OpenGait: より良い実践性に向けた歩行認識のための総合的なベンチマーク研究
- Authors: Chao Fan, Saihui Hou, Junhao Liang, Chuanfu Shen, Jingzhe Ma, Dongyang Jin, Yongzhen Huang, Shiqi Yu,
- Abstract要約: われわれはまず,フレキシブルで効率的な歩行認識プラットフォームOpenGaitを開発した。
また,OpenGaitを基盤として,近年の歩行認識の進展を再考するため,詳細なアブレーション実験を実施している。
これらの知見にインスパイアされ、構造的に単純だが経験的に強力で実用的に堅牢なベースラインモデル3つを開発した。
- 参考スコア(独自算出の注目度): 11.64292241875791
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gait recognition, a rapidly advancing vision technology for person identification from a distance, has made significant strides in indoor settings. However, evidence suggests that existing methods often yield unsatisfactory results when applied to newly released real-world gait datasets. Furthermore, conclusions drawn from indoor gait datasets may not easily generalize to outdoor ones. Therefore, the primary goal of this work is to present a comprehensive benchmark study aimed at improving practicality rather than solely focusing on enhancing performance. To this end, we first develop OpenGait, a flexible and efficient gait recognition platform. Using OpenGait as a foundation, we conduct in-depth ablation experiments to revisit recent developments in gait recognition. Surprisingly, we detect some imperfect parts of certain prior methods thereby resulting in several critical yet undiscovered insights. Inspired by these findings, we develop three structurally simple yet empirically powerful and practically robust baseline models, i.e., DeepGaitV2, SkeletonGait, and SkeletonGait++, respectively representing the appearance-based, model-based, and multi-modal methodology for gait pattern description. Beyond achieving SoTA performances, more importantly, our careful exploration sheds new light on the modeling experience of deep gait models, the representational capacity of typical gait modalities, and so on. We hope this work can inspire further research and application of gait recognition towards better practicality. The code is available at https://github.com/ShiqiYu/OpenGait.
- Abstract(参考訳): 遠隔地からの人物識別のための急速に進歩する視覚技術である歩行認識は、屋内環境において大きな進歩を遂げている。
しかし、既存の手法が新しくリリースされた実世界の歩行データセットに適用された場合、しばしば不満足な結果をもたらすことが証拠として示されている。
さらに,屋内歩行データから得られた結論は,屋外への一般化が困難である。
そのため,本研究の主な目的は,性能向上にのみ焦点をあてるのではなく,実用性向上を目的とした総合的なベンチマーク研究を行うことである。
そこで我々はまず,フレキシブルで効率的な歩行認識プラットフォームOpenGaitを開発した。
また,OpenGaitを基盤として,近年の歩行認識の進展を再考するため,詳細なアブレーション実験を実施している。
意外なことに、特定の先行手法の不完全な部分を検出することで、批判的だが発見されていないいくつかの洞察が得られる。
これらの知見に触発されて,DeepGaitV2,SkeletonGait,SkeletonGait++の3つの構造的単純かつ実用的に堅牢なベースラインモデルを開発した。
より重要なことは、SoTAのパフォーマンスの達成以外にも、我々の慎重な調査は、深層歩行モデルのモデリング経験、典型的な歩行モダリティの表現能力等に新たな光を当てています。
この研究が、より良い実践性に向けた歩行認識のさらなる研究と応用を刺激することを期待している。
コードはhttps://github.com/ShiqiYu/OpenGait.comで入手できる。
関連論文リスト
- BigGait: Learning Gait Representation You Want by Large Vision Models [12.620774996969535]
既存の歩行認識手法は、教師あり学習によって駆動されるタスク固有の上流に頼り、明確な歩行表現を提供する。
この傾向から逃れたこの研究は、BigGaitと呼ばれるシンプルだが効率的な歩行フレームワークを提案する。
BigGaitは、すべての目的の知識を、サードパーティの監視信号を必要としない暗黙の歩行表現に変換する。
論文 参考訳(メタデータ) (2024-02-29T13:00:22Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
5つの実世界のアプリケーション駆動データセットを含む新しいベンチマークを導入する。
本稿では,オープンワールドのための新しいオブジェクト検出モデル(FOMO)を提案する。
論文 参考訳(メタデータ) (2023-12-10T03:56:06Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
我々はHaPと呼ばれる明示的なポイントベース人間再構築フレームワークを導入する。
提案手法は,3次元幾何学空間における完全明示的な点雲推定,操作,生成,洗練が特徴である。
我々の結果は、完全に明示的で幾何学中心のアルゴリズム設計へのパラダイムのロールバックを示すかもしれない。
論文 参考訳(メタデータ) (2023-11-06T05:52:29Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Exploring Deep Models for Practical Gait Recognition [11.185716724976414]
我々は、最先端の屋外歩行認識のための深層モデルの構築方法について、統一的な視点を示す。
具体的には、浅い歩行モデルのステレオタイプに挑戦し、明示的な時間的モデリングの優位性を実証する。
提案されたCNNベースのDeepGaitV2シリーズとTransformerベースのSwinGaitシリーズは、Gait3DとGREWで大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-03-06T17:19:28Z) - OpenGait: Revisiting Gait Recognition Toward Better Practicality [19.998635762435878]
われわれはまずOpenGaitというフレキシブルで効率的な歩行認識を開発した。
これらの発見に触発されて、構造的にシンプルで、経験的に強力で、事実上堅牢なベースラインモデルであるGaitBaseを開発した。
論文 参考訳(メタデータ) (2022-11-12T07:24:29Z) - Multi-Modal Human Authentication Using Silhouettes, Gait and RGB [59.46083527510924]
全体認証は、遠隔生体認証のシナリオにおいて有望なアプローチである。
本稿では,RGBデータとシルエットデータを組み合わせたDME(Dual-Modal Ensemble)を提案する。
DME内では、従来の歩行分析に使用される二重ヘリカル歩行パターンにインスパイアされたGaitPatternを提案する。
論文 参考訳(メタデータ) (2022-10-08T15:17:32Z) - Learning Gait Representation from Massive Unlabelled Walking Videos: A
Benchmark [11.948554539954673]
コントラスト学習を伴う歩行認識のための大規模自己教師付きベンチマークを提案する。
1.02万個の歩行シーケンスからなる大規模歩行データセットGaitLU-1Mを収集した。
そこで我々は, CASIA-B, OU-M, GREW, Gait3D の4つの広く使用されている歩行指標を用いて, 事前学習モデルの評価を行った。
論文 参考訳(メタデータ) (2022-06-28T12:33:42Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
歩行ベンチマークにより、研究コミュニティは高性能歩行認識システムの訓練と評価を行うことができる。
GREWは、野生における歩行認識のための最初の大規模データセットである。
SPOSGaitはNASベースの最初の歩行認識モデルである。
論文 参考訳(メタデータ) (2022-05-05T14:57:39Z) - Towards a Deeper Understanding of Skeleton-based Gait Recognition [4.812321790984493]
近年、ほとんどの歩行認識法は、人のシルエットを使って歩行の特徴を抽出している。
モデルに基づく手法はこれらの問題に悩まされず、身体関節の時間運動を表現することができる。
本研究では,高次入力と残差ネットワークを組み合わせたグラフ畳み込みネットワーク(GCN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-04-16T18:23:37Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。