Revealing Nonclassicality of Multiphoton Optical Beams via Artificial Neural Networks
- URL: http://arxiv.org/abs/2405.09174v1
- Date: Wed, 15 May 2024 08:27:22 GMT
- Title: Revealing Nonclassicality of Multiphoton Optical Beams via Artificial Neural Networks
- Authors: Radek Machulka, Jan Peřina Jr., Václav Michálek, Roberto de J. León-Montiel, Ondřej Haderka,
- Abstract summary: We show that the nonclassicality of multiphoton quantum states can be assessed and fully characterized, even in the cases in which the features are concealed by the measuring devices.
Our work paves the way toward artificial-intelligence-assisted experimental-setup characterization, as well as smart quantum-state nonclassicality identification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identification of nonclassical features of multiphoton quantum states represents a task of the utmost importance in the development of many quantum photonic technologies. Under realistic experimental conditions, a photonic quantum state gets affected by its interaction with several nonideal opto-electronic devices, including those used to guide, detect or characterize it. The result of such noisy interaction is that the nonclassical features of the original quantum state get considerably reduced or are completely absent in the detected, final state. In this work, the self-learning features of artificial neural networks are exploited to experimentally show that the nonclassicality of multiphoton quantum states can be assessed and fully characterized, even in the cases in which the nonclassical features are concealed by the measuring devices. Our work paves the way toward artificial-intelligence-assisted experimental-setup characterization, as well as smart quantum-state nonclassicality identification.
Related papers
- Mesoscopic ultrafast nonlinear optics -- The emergence of multimode
quantum non-Gaussian physics [0.0]
nonlinear nanophotonics place us just above the mesoscopic regime, where a few hundred photons suffice to trigger nonlinear saturation.
In contrast to classical or deep-quantum optics, the mesoscale is characterized by dynamical interactions between mean-field, Gaussian, and non-Gaussian quantum features.
This review is intended to serve as a guidepost as we begin to navigate this new frontier in ultrafast quantum nonlinear optics.
arXiv Detail & Related papers (2023-11-23T02:20:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum-enhanced pattern recognition [0.0]
We show for the first time quantum advantage in the multi-cell problem of pattern recognition.
We use entangled probe states and photon-counting to achieve quantum advantage in classification error over that achieved with classical resources.
This motivates future developments of quantum-enhanced pattern recognition of bosonic-loss within complex domains.
arXiv Detail & Related papers (2023-04-12T13:06:38Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Multicopy observables for the detection of optically nonclassical states [0.0]
We design optical nonclassicality observables that act on several replicas of a quantum state.
These observables are used to construct a family of physically implementable schemes.
arXiv Detail & Related papers (2022-05-24T12:51:42Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Direct experimental certification of quantum non-Gaussian character and
Wigner function negativity of single-photon detectors [0.0]
We propose and experimentally demonstrate a procedure for direct certification of quantum non-Gaussianity and Wigner function negativity.
We characterize the highly nonclassical properties of the detector by probing it with only two classical thermal states and a vacuum state.
Our results open the way for direct benchmarking of photonic quantum detectors with a few measurements on classical states.
arXiv Detail & Related papers (2021-01-10T09:37:10Z) - Integrated quantum photonics with silicon carbide: challenges and
prospects [0.0]
Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
arXiv Detail & Related papers (2020-10-29T15:44:13Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.