Integrated quantum photonics with silicon carbide: challenges and
prospects
- URL: http://arxiv.org/abs/2010.15700v1
- Date: Thu, 29 Oct 2020 15:44:13 GMT
- Title: Integrated quantum photonics with silicon carbide: challenges and
prospects
- Authors: Daniil M. Lukin, Melissa A. Guidry, Jelena Vu\v{c}kovi\'c
- Abstract summary: Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically-addressable solid-state spin defects are promising candidates for
storing and manipulating quantum information using their long coherence ground
state manifold; individual defects can be entangled using photon-photon
interactions, offering a path toward large scale quantum photonic networks.
Quantum computing protocols place strict limits on the acceptable photon losses
in the system. These low-loss requirements cannot be achieved without photonic
engineering, but are attainable if combined with state-of-the-art nanophotonic
technologies. However, most materials that host spin defects are challenging to
process: as a result, the performance of quantum photonic devices is orders of
magnitude behind that of their classical counterparts. Silicon carbide (SiC) is
well-suited to bridge the classical-quantum photonics gap, since it hosts
promising optically-addressable spin defects and can be processed into
SiC-on-insulator for scalable, integrated photonics. In this Perspective, we
discuss recent progress toward the development of scalable quantum photonic
technologies based on solid state spins in silicon carbide, and discuss current
challenges and future directions.
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - Temperature-independent almost perfect photon entanglement from quantum
dots via the SUPER scheme [0.0]
Entangled photon pairs are essential for quantum communication technology.
quantum dots are ready to be used as entangled photon pair sources in applications requiring high degrees of entanglement up to temperatures of about $80,$K.
arXiv Detail & Related papers (2023-07-01T11:25:35Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Advances in silicon quantum photonics [0.5823835334368094]
Quantum technology is poised to enable a step change in human capability for computing, communications and sensing.
For quantum technology to be implemented, a new paradigm photonic system is required.
Silicon photonics has unparalleled density and component performance.
arXiv Detail & Related papers (2022-07-06T13:11:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Droplet Epitaxy of Semiconductor Nanostructures for Quantum Photonic
Devices [1.0439136407307046]
A key component is a light source, able to provide single or entangled photon pairs.
Semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips.
Recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters.
arXiv Detail & Related papers (2021-03-28T08:55:55Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.