論文の概要: Lens functions for exploring UMAP Projections with Domain Knowledge
- arxiv url: http://arxiv.org/abs/2405.09204v1
- Date: Wed, 15 May 2024 09:23:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:56:07.862281
- Title: Lens functions for exploring UMAP Projections with Domain Knowledge
- Title(参考訳): ドメイン知識を用いたUMAP投影探索用レンズ機能
- Authors: Daniel M. Bot, Jan Aerts,
- Abstract要約: UMAPのための3種類のレンズ関数を提案する。
レンズ関数は、アナリストが質問にプロジェクションを適応させ、他の方法では隠されたパターンを明らかにすることを可能にする。
- 参考スコア(独自算出の注目度): 1.104960878651584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dimensionality reduction algorithms are often used to visualise high-dimensional data. Previously, studies have used prior information to enhance or suppress expected patterns in projections. In this paper, we adapt such techniques for domain knowledge guided interactive exploration. Inspired by Mapper and STAD, we present three types of lens functions for UMAP, a state-of-the-art dimensionality reduction algorithm. Lens functions enable analysts to adapt projections to their questions, revealing otherwise hidden patterns. They filter the modelled connectivity to explore the interaction between manually selected features and the data's structure, creating configurable perspectives each potentially revealing new insights. The effectiveness of the lens functions is demonstrated in two use cases and their computational cost is analysed in a synthetic benchmark. Our implementation is available in an open-source Python package: https://github.com/vda-lab/lensed_umap.
- Abstract(参考訳): 次元減少アルゴリズムは高次元データを可視化するためにしばしば用いられる。
これまでの研究では、予測される投影パターンの強化や抑制に事前情報を用いてきた。
本稿では,対話的探索を指導したドメイン知識に適用する。
Mapper と STAD にインスパイアされた本研究では,3種類のレンズ関数を UMAP に提示する。
レンズ関数は、アナリストが質問にプロジェクションを適応させ、他の方法では隠されたパターンを明らかにすることを可能にする。
それらは、手動で選択された機能とデータ構造の間の相互作用を探索するために、モデル化された接続をフィルタリングし、それぞれが新たな洞察を示すような設定可能な視点を作成する。
レンズ関数の有効性は2つのユースケースで示され、その計算コストは合成ベンチマークで分析される。
私たちの実装は、オープンソースのPythonパッケージで利用可能です。
関連論文リスト
- Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
本稿では,このような特徴変換をモデル化するために,深度などの幾何学的情報を活用することに焦点を当てる。
まず2次元画像の特徴を,各ビューの画素ごとのパラメトリック深度分布を予測して,エゴ車に定義された3次元空間に引き上げる。
次に、深度からBEVフレームへの3次元空間占有度に基づいて、3次元特徴体積を集約する。
論文 参考訳(メタデータ) (2023-07-09T06:07:22Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Probabilistic Tracking with Deep Factors [8.030212474745879]
因子グラフに基づく確率的追跡フレームワークにおける特徴量に対する生成密度と組み合わせたディープ・フィーチャー・エンコーディングの使い方を示す。
本稿では,学習した特徴エンコーダと生成密度を組み合わせる可能性モデルを提案する。
論文 参考訳(メタデータ) (2021-12-02T21:31:51Z) - Learning Models as Functionals of Signed-Distance Fields for
Manipulation Planning [51.74463056899926]
本研究では,シーン内のオブジェクトを表す符号付き距離場の目的を学習する,最適化に基づく操作計画フレームワークを提案する。
オブジェクトを符号付き距離場として表現することは、ポイントクラウドや占有率の表現よりも高い精度で、様々なモデルの学習と表現を可能にする。
論文 参考訳(メタデータ) (2021-10-02T12:36:58Z) - Spot What Matters: Learning Context Using Graph Convolutional Networks
for Weakly-Supervised Action Detection [0.0]
ビデオにおける人間の行動検出を改善するために,自己注意と畳み込みネットワークに基づくアーキテクチャを導入する。
我々のモデルは、学習したコンテキストを注意マップとして可視化することで、トレーニング中に見つからないアクションやオブジェクトに対しても説明しやすくする。
実験結果から, 文脈的アプローチはビデオ・mAPの2点以上で, ベースライン動作検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-07-28T21:37:18Z) - Learning Feature Aggregation for Deep 3D Morphable Models [57.1266963015401]
階層レベルで機能集約を向上するためのマッピング行列を学習するための注意に基づくモジュールを提案する。
実験の結果,マッピング行列のエンドツーエンドトレーニングにより,様々な3次元形状データセットの最先端結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-05T16:41:00Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
現在のアルゴリズムでは、データセット内のトレーニングサンプルやカテゴリの不均衡が不足している。
本稿では,HOI検出のためのDECAugと呼ばれる効率的かつ効率的なデータ拡張手法を提案する。
実験の結果,V-COCOおよびHICODETデータセットの3.3mAPと1.6mAPの改善が得られた。
論文 参考訳(メタデータ) (2020-10-02T13:59:05Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Object Detection on Single Monocular Images through Canonical
Correlation Analysis [3.4722706398428493]
点雲や深度画像のような余分な3次元データを用いることなく、単分子画像から3次元オブジェクト情報を検索する。
本稿では,単眼画像とそれに対応する深度画像とを融合する2次元CCAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-13T05:03:42Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
FDiveは視覚的に探索可能な関連モデルの作成を支援する視覚的能動学習システムである。
最適な類似度尺度に基づいて、インタラクティブな自己組織化マップベースの関連モデルを算出する。
また、その正確性を改善するために、さらに関連性フィードバックを自動で促す。
論文 参考訳(メタデータ) (2019-07-29T15:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。