論文の概要: Fair Generalized Linear Mixed Models
- arxiv url: http://arxiv.org/abs/2405.09273v3
- Date: Mon, 11 Nov 2024 14:32:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:31.248205
- Title: Fair Generalized Linear Mixed Models
- Title(参考訳): 公正一般化線形混合モデル
- Authors: Jan Pablo Burgard, João Vitor Pamplona,
- Abstract要約: 機械学習の公正性は、データとモデルの不正確さのバイアスが差別的な決定に結びつかないことを保証することを目的としている。
両問題を同時に処理できるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: When using machine learning for automated prediction, it is important to account for fairness in the prediction. Fairness in machine learning aims to ensure that biases in the data and model inaccuracies do not lead to discriminatory decisions. E.g., predictions from fair machine learning models should not discriminate against sensitive variables such as sexual orientation and ethnicity. The training data often in obtained from social surveys. In social surveys, oftentimes the data collection process is a strata sampling, e.g. due to cost restrictions. In strata samples, the assumption of independence between the observation is not fulfilled. Hence, if the machine learning models do not account for the strata correlations, the results may be biased. Especially high is the bias in cases where the strata assignment is correlated to the variable of interest. We present in this paper an algorithm that can handle both problems simultaneously, and we demonstrate the impact of stratified sampling on the quality of fair machine learning predictions in a reproducible simulation study.
- Abstract(参考訳): 自動予測に機械学習を用いる場合、予測の公平性を考慮することが重要である。
機械学習の公正性は、データとモデルの不正確さのバイアスが差別的な決定に結びつかないことを保証することを目的としている。
例えば、公正な機械学習モデルからの予測は、性的指向や民族性のような敏感な変数に対して差別するべきではない。
トレーニングデータは、しばしば社会調査から取得される。
ソーシャルサーベイでは、しばしばデータ収集のプロセスは、コスト制限のため、ストラタサンプリングである。
成層圏のサンプルでは、観測間の独立性の仮定は満たされない。
したがって、機械学習モデルが成層相関を考慮しなければ、結果はバイアスを受ける可能性がある。
特に、階層割当が興味の変数と相関している場合のバイアスが高い。
本稿では,両問題を同時に処理できるアルゴリズムを提案し,再現可能なシミュレーション研究において,階層化サンプリングが公正な機械学習予測の品質に与える影響を実証する。
関連論文リスト
- Fair Mixed Effects Support Vector Machine [0.0]
機械学習の公正性は、トレーニングデータに存在するバイアスを緩和し、不完全性をモデル化することを目的としている。
これは、モデルが民族性や性的指向といった繊細な特徴に基づいて決定するのを防ぐことで達成される。
両問題を同時に処理できるベクターマシンアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-10T12:25:06Z) - Do We Really Even Need Data? [2.3749120526936465]
研究者は、事前学習されたアルゴリズムの予測を結果変数として利用している。
推測のための標準的なツールは、真で観測されていない結果が予測された値に置き換えられたときに、独立変数と利害関係の関連性を誤って表現することができる。
論文 参考訳(メタデータ) (2024-01-14T23:19:21Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - Provable Detection of Propagating Sampling Bias in Prediction Models [1.7709344190822935]
本稿では,データバイアスの特定の形式である差分サンプリングバイアスが,データステージから予測ステージにどのように伝播するかを理論的に分析する。
妥当な仮定の下では、モデル予測におけるバイアスの量が、データの差分サンプリングバイアスの量の関数としてどのように変化するかを定量化する。
仮定が緩和された場合でも理論的な結果が実際に成り立つことを実証する。
論文 参考訳(メタデータ) (2023-02-13T23:39:35Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
偏見のあるモデルは、社会の特定のグループに不均等に害を与える決定を下すことができる。
多くの作業は静的ML環境での不公平さを測定することに費やされているが、動的でパフォーマンスのよい予測は行っていない。
本稿では,データのバイアスを特徴付ける分類法を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:56:04Z) - Quality of Data in Machine Learning [3.9998518782208774]
この研究は、開始前提に反論し、この場合のデータの重要性は、データの量ではなく、データの品質にあることを述べ続けている。
論文 参考訳(メタデータ) (2021-12-17T09:22:46Z) - A Note on High-Probability versus In-Expectation Guarantees of
Generalization Bounds in Machine Learning [95.48744259567837]
統計的機械学習理論は、しばしば機械学習モデルの一般化を保証するよう試みる。
機械学習モデルのパフォーマンスに関する声明は、サンプリングプロセスを考慮する必要がある。
1つのステートメントを別のステートメントに変換する方法を示します。
論文 参考訳(メタデータ) (2020-10-06T09:41:35Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。