Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
- URL: http://arxiv.org/abs/2405.09276v1
- Date: Wed, 15 May 2024 11:46:47 GMT
- Title: Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
- Authors: Pengcheng Sun, Erwu Liu, Wei Ni, Kanglei Yu, Rui Wang, Abbas Jamalipour,
- Abstract summary: Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load.
The non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm.
This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions.
- Score: 25.405210975577834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.
Related papers
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Hierarchical Federated Learning in Multi-hop Cluster-Based VANETs [12.023861154677205]
This paper introduces a novel framework for hierarchical federated learning (HFL) over multi-hop clustering-based VANET.
The proposed method utilizes a weighted combination of the average relative speed and cosine similarity of FL model parameters as a clustering metric.
Through extensive simulations, the proposed hierarchical federated learning over clustered VANET has been demonstrated to improve accuracy and convergence time significantly.
arXiv Detail & Related papers (2024-01-18T20:05:34Z) - Hierarchical Over-the-Air Federated Learning with Awareness of
Interference and Data Heterogeneity [3.8798345704175534]
We introduce a scalable transmission scheme that efficiently uses a single wireless resource through over-the-air computation.
We show that despite the interference and the data heterogeneity, the proposed scheme achieves high learning accuracy and can significantly outperform the conventional hierarchical algorithm.
arXiv Detail & Related papers (2024-01-02T21:43:01Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Scalable Hierarchical Over-the-Air Federated Learning [3.8798345704175534]
This work introduces a new two-level learning method designed to handle both interference and device data heterogeneity.
We present a comprehensive mathematical approach to derive the convergence bound for the proposed algorithm.
Despite the interference and data heterogeneity, the proposed algorithm achieves high learning accuracy for a variety of parameters.
arXiv Detail & Related papers (2022-11-29T12:46:37Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Federated Learning with Compression: Unified Analysis and Sharp
Guarantees [39.092596142018195]
Communication cost is often a critical bottleneck to scale up distributed optimization algorithms to collaboratively learn a model from millions of devices.
Two notable trends to deal with the communication overhead of federated compression and computation are unreliable compression and heterogeneous communication.
We analyze their convergence in both homogeneous and heterogeneous data distribution settings.
arXiv Detail & Related papers (2020-07-02T14:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.