Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
- URL: http://arxiv.org/abs/2405.09276v1
- Date: Wed, 15 May 2024 11:46:47 GMT
- Title: Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
- Authors: Pengcheng Sun, Erwu Liu, Wei Ni, Kanglei Yu, Rui Wang, Abbas Jamalipour,
- Abstract summary: Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load.
The non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm.
This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions.
- Score: 25.405210975577834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.
Related papers
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - Federated Contrastive Learning for Personalized Semantic Communication [55.46383524190467]
We design a federated contrastive learning framework aimed at supporting personalized semantic communication.
FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station.
To tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator.
arXiv Detail & Related papers (2024-06-13T14:45:35Z) - Distributed Event-Based Learning via ADMM [11.461617927469316]
We consider a distributed learning problem, where agents minimize a global objective function by exchanging information over a network.
Our approach has two distinct features: (i) It substantially reduces communication by triggering communication only when necessary, and (ii) it is agnostic to the data-distribution among the different agents.
arXiv Detail & Related papers (2024-05-17T08:30:28Z) - FedAC: An Adaptive Clustered Federated Learning Framework for Heterogeneous Data [21.341280782748278]
Clustered federated learning (CFL) is proposed to mitigate the performance deterioration stemming from data heterogeneity inFL.
We propose an adaptive CFL framework, named FedAC, which efficiently integrates global knowledge into intra-cluster learning.
Experiments show that FedAC achieves superior empirical performance, increasing the test accuracy by around 1.82% and 12.67%.
arXiv Detail & Related papers (2024-03-25T06:43:28Z) - Hierarchical Federated Learning in Multi-hop Cluster-Based VANETs [12.023861154677205]
This paper introduces a novel framework for hierarchical federated learning (HFL) over multi-hop clustering-based VANET.
The proposed method utilizes a weighted combination of the average relative speed and cosine similarity of FL model parameters as a clustering metric.
Through extensive simulations, the proposed hierarchical federated learning over clustered VANET has been demonstrated to improve accuracy and convergence time significantly.
arXiv Detail & Related papers (2024-01-18T20:05:34Z) - Reinforcement Federated Learning Method Based on Adaptive OPTICS
Clustering [19.73560248813166]
This paper proposes an adaptive OPTICS clustering algorithm for federated learning.
By perceiving the clustering environment as a Markov decision process, the goal is to find the best parameters of the OPTICS cluster.
The reliability and practicability of this method have been verified on the experimental data, and its effec-tiveness and superiority have been proved.
arXiv Detail & Related papers (2023-06-22T13:11:19Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.