論文の概要: The Unfairness of $\varepsilon$-Fairness
- arxiv url: http://arxiv.org/abs/2405.09360v1
- Date: Wed, 15 May 2024 14:13:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 13:16:53.546453
- Title: The Unfairness of $\varepsilon$-Fairness
- Title(参考訳): $\varepsilon$-fairnessの不公平
- Authors: Tolulope Fadina, Thorsten Schmidt,
- Abstract要約: 我々は、$varepsilon$-fairnessという概念が採用されれば、現実世界の文脈で最大に不公平な結果をもたらす可能性があることを示した。
本研究は,大学入学と信用リスク評価の2つの実例を用いて実施した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in decision-making processes is often quantified using probabilistic metrics. However, these metrics may not fully capture the real-world consequences of unfairness. In this article, we adopt a utility-based approach to more accurately measure the real-world impacts of decision-making process. In particular, we show that if the concept of $\varepsilon$-fairness is employed, it can possibly lead to outcomes that are maximally unfair in the real-world context. Additionally, we address the common issue of unavailable data on false negatives by proposing a reduced setting that still captures essential fairness considerations. We illustrate our findings with two real-world examples: college admissions and credit risk assessment. Our analysis reveals that while traditional probability-based evaluations might suggest fairness, a utility-based approach uncovers the necessary actions to truly achieve equality. For instance, in the college admission case, we find that enhancing completion rates is crucial for ensuring fairness. Summarizing, this paper highlights the importance of considering the real-world context when evaluating fairness.
- Abstract(参考訳): 意思決定プロセスの公平性は確率的指標を用いて定量化されることが多い。
しかし、これらの指標は、実際の不公平な結果を完全には捉えていないかもしれない。
本稿では,意思決定プロセスの現実的影響をより正確に測定するために,ユーティリティベースのアプローチを採用する。
特に、$\varepsilon$-fairnessという概念が採用された場合、現実世界の文脈で最大に不公平な結果をもたらす可能性があることを示す。
さらに, 虚偽陰性に関する不使用データの一般的な問題に対して, 重要な公平性を考慮した設定の削減を提案する。
本研究は,大学入学と信用リスク評価の2つの実例を用いて実施した。
分析の結果,従来の確率に基づく評価は公平性を示唆するが,実用性に基づくアプローチは真に平等を達成するために必要な行動を明らかにする。
例えば,大学入試の場合,修了率の向上は公平性の確保に不可欠であることが判明した。
本論文は, 公平性を評価する上で, 現実の文脈を考えることの重要性を強調した。
関連論文リスト
- Implementing Fairness: the view from a FairDream [0.0]
私たちはAIモデルをトレーニングし、不平等を検出して修正するために、独自の公正パッケージFairDreamを開発します。
本実験は,FairDreamの特性として,真理を条件としたフェアネスの目標を達成できることを実証した。
論文 参考訳(メタデータ) (2024-07-20T06:06:24Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Auditing Fairness under Unobserved Confounding [56.61738581796362]
リスクファクターがすべて観察されているという仮定を完全に取り除いたり緩和したりしても、ハイリスクな個人に治療率に有意義な限界を与えることができることを示す。
既存の意思決定システムの不公平な結果を原則的に評価することができる。
論文 参考訳(メタデータ) (2024-03-18T21:09:06Z) - Navigating Fairness Measures and Trade-Offs [0.0]
私は、Rawlsの公正性の概念をフェアネスとして利用することで、公正性対策と正確なトレードオフをナビゲートするための基盤を作ることができることを示します。
これはまた、分配的正義の哲学的説明と公正文学の間のギャップを埋めるのにも役立っている。
論文 参考訳(メタデータ) (2023-07-17T13:45:47Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
本稿では,グループフェアネス手法のベンチマークフレームワークであるFair Fairness Benchmark(textsfFFB)を紹介する。
グループフェアネスの異なる概念を確実にするための最先端手法を包括的に分析する。
論文 参考訳(メタデータ) (2023-06-15T19:51:28Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
本稿では,予測パリティに付随する公平度対策のための因果分解式を提案する。
統計的および予測パリティの概念は、実際には互いに排他的ではなく、相補的であり、公正の概念のスペクトルにまたがっていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:23:22Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research [2.6397379133308214]
このような仮定は、しばしば暗黙的かつ未検討のまま残され、矛盾した結論につながると我々は主張する。
この研究の目的は、機械学習モデルの公平性を改善することだが、これらの未検討の暗黙の仮定は、実際、突発的な不公平をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-02-01T22:02:14Z) - Survey on Causal-based Machine Learning Fairness Notions [4.157415305926584]
本稿では,因果関係に基づくフェアネス概念の包括的リストについて検討し,実世界のシナリオにおける適用性について検討する。
因果関係に基づく公平性の概念の大部分は、観測不可能な量という観点で定義されるため、実際にはそれらの量を計算するか、見積もる必要がある。
論文 参考訳(メタデータ) (2020-10-19T14:28:55Z) - Algorithmic Decision Making with Conditional Fairness [48.76267073341723]
条件付きフェアネスを、条件付きフェアネス変数の条件付けにより、より健全なフェアネス計量として定義する。
本稿では,アルゴリズム決定の精度と公平性のトレードオフを追跡するために,導出条件公正規則化器(DCFR)を提案する。
論文 参考訳(メタデータ) (2020-06-18T12:56:28Z) - Statistical Equity: A Fairness Classification Objective [6.174903055136084]
エクイティの原則によって動機付けられた新しい公平性の定義を提案する。
フェアネスの定義を形式化し、適切な文脈でモチベーションを与えます。
我々は、定義の有効性を示すために、複数の自動評価と人的評価を行う。
論文 参考訳(メタデータ) (2020-05-14T23:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。