SARATR-X: Toward Building A Foundation Model for SAR Target Recognition
- URL: http://arxiv.org/abs/2405.09365v5
- Date: Wed, 22 Jan 2025 04:06:29 GMT
- Title: SARATR-X: Toward Building A Foundation Model for SAR Target Recognition
- Authors: Weijie Li, Wei Yang, Yuenan Hou, Li Liu, Yongxiang Liu, Xiang Li,
- Abstract summary: We make the first attempt towards building a foundation model for SAR ATR, termed SARATR-X.
SARATR-X learns generalizable representations via self-supervised learning (SSL) and provides a cornerstone for label-efficient model adaptation to generic SAR target detection and classification tasks.
SARATR-X is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now.
- Score: 22.770010893572973
- License:
- Abstract: Despite the remarkable progress in synthetic aperture radar automatic target recognition (SAR ATR), recent efforts have concentrated on detecting and classifying a specific category, e.g., vehicles, ships, airplanes, or buildings. One of the fundamental limitations of the top-performing SAR ATR methods is that the learning paradigm is supervised, task-specific, limited-category, closed-world learning, which depends on massive amounts of accurately annotated samples that are expensively labeled by expert SAR analysts and have limited generalization capability and scalability. In this work, we make the first attempt towards building a foundation model for SAR ATR, termed SARATR-X. SARATR-X learns generalizable representations via self-supervised learning (SSL) and provides a cornerstone for label-efficient model adaptation to generic SAR target detection and classification tasks. Specifically, SARATR-X is trained on 0.18 M unlabelled SAR target samples, which are curated by combining contemporary benchmarks and constitute the largest publicly available dataset till now. Considering the characteristics of SAR images, a backbone tailored for SAR ATR is carefully designed, and a two-step SSL method endowed with multi-scale gradient features was applied to ensure the feature diversity and model scalability of SARATR-X. The capabilities of SARATR-X are evaluated on classification under few-shot and robustness settings and detection across various categories and scenes, and impressive performance is achieved, often competitive with or even superior to prior fully supervised, semi-supervised, or self-supervised algorithms. Our SARATR-X and the curated dataset are released at https://github.com/waterdisappear/SARATR-X to foster research into foundation models for SAR image interpretation.
Related papers
- IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition [13.783950035836593]
IncSAR is an incremental learning framework designed to tackle catastrophic forgetting in target recognition.
To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation.
Experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T08:49:47Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Benchmarking Deep Learning Classifiers for SAR Automatic Target
Recognition [7.858656052565242]
This paper comprehensively benchmarks several advanced deep learning models for SAR ATR with multiple distinct SAR imagery datasets.
We evaluate and compare the five classifiers concerning their classification accuracy runtime performance in terms of inference throughput and analytical performance.
No clear model winner emerges from all of our chosen metrics and a one model rules all case is doubtful in the domain of SAR ATR.
arXiv Detail & Related papers (2023-12-12T02:20:39Z) - Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture [23.375515181854254]
Self-Supervised Learning (SSL) methods can achieve various SAR Automatic Target Recognition (ATR) tasks with pre-training in large-scale unlabeled data.
SSL aims to construct supervision signals directly from the data, which minimizes the need for expensive expert annotation.
This study investigates an effective SSL method for SAR ATR, which can pave the way for a foundation model in SAR ATR.
arXiv Detail & Related papers (2023-11-26T01:05:55Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - A Global Model Approach to Robust Few-Shot SAR Automatic Target
Recognition [6.260916845720537]
It may not always be possible to collect hundreds of labeled samples per class for training deep learning-based SAR Automatic Target Recognition (ATR) models.
This work specifically tackles the few-shot SAR ATR problem, where only a handful of labeled samples may be available to support the task of interest.
arXiv Detail & Related papers (2023-03-20T00:24:05Z) - Open-Set Automatic Target Recognition [52.27048031302509]
Automatic Target Recognition (ATR) is a category of computer vision algorithms which attempts to recognize targets on data obtained from different sensors.
Existing ATR algorithms are developed for traditional closed-set methods where training and testing have the same class distribution.
We propose an Open-set Automatic Target Recognition framework where we enable open-set recognition capability for ATR algorithms.
arXiv Detail & Related papers (2022-11-10T21:28:24Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Automatic Target Recognition on Synthetic Aperture Radar Imagery: A
Survey [0.0]
We propose a taxonomy for the SAR ATR architectures, along with a comparison of the strengths and weaknesses of each method under both standard and extended operational conditions.
Despite MSTAR being the standard SAR ATR benchmarking dataset we also highlight its weaknesses and suggest future research directions.
arXiv Detail & Related papers (2020-07-04T14:22:30Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.