Physics-Guided Detector for SAR Airplanes
- URL: http://arxiv.org/abs/2411.12301v1
- Date: Tue, 19 Nov 2024 07:41:09 GMT
- Title: Physics-Guided Detector for SAR Airplanes
- Authors: Zhongling Huang, Long Liu, Shuxin Yang, Zhirui Wang, Gong Cheng, Junwei Han,
- Abstract summary: We propose a novel physics-guided detector (PGD) learning paradigm for SAR airplanes.
It comprehensively investigate their discreteness and variability to improve the detection performance.
The experiments demonstrate the flexibility and effectiveness of the proposed PGD.
- Score: 48.11882103050703
- License:
- Abstract: The disperse structure distributions (discreteness) and variant scattering characteristics (variability) of SAR airplane targets lead to special challenges of object detection and recognition. The current deep learning-based detectors encounter challenges in distinguishing fine-grained SAR airplanes against complex backgrounds. To address it, we propose a novel physics-guided detector (PGD) learning paradigm for SAR airplanes that comprehensively investigate their discreteness and variability to improve the detection performance. It is a general learning paradigm that can be extended to different existing deep learning-based detectors with "backbone-neck-head" architectures. The main contributions of PGD include the physics-guided self-supervised learning, feature enhancement, and instance perception, denoted as PGSSL, PGFE, and PGIP, respectively. PGSSL aims to construct a self-supervised learning task based on a wide range of SAR airplane targets that encodes the prior knowledge of various discrete structure distributions into the embedded space. Then, PGFE enhances the multi-scale feature representation of a detector, guided by the physics-aware information learned from PGSSL. PGIP is constructed at the detection head to learn the refined and dominant scattering point of each SAR airplane instance, thus alleviating the interference from the complex background. We propose two implementations, denoted as PGD and PGD-Lite, and apply them to various existing detectors with different backbones and detection heads. The experiments demonstrate the flexibility and effectiveness of the proposed PGD, which can improve existing detectors on SAR airplane detection with fine-grained classification task (an improvement of 3.1\% mAP most), and achieve the state-of-the-art performance (90.7\% mAP) on SAR-AIRcraft-1.0 dataset. The project is open-source at \url{https://github.com/XAI4SAR/PGD}.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions.
The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training.
Results indicate significant performance improvements across all settings.
arXiv Detail & Related papers (2024-07-03T07:19:41Z) - SAFE: a SAR Feature Extractor based on self-supervised learning and masked Siamese ViTs [5.961207817077044]
We propose a novel self-supervised learning framework based on masked Siamese Vision Transformers to create a General SAR Feature Extractor coined SAFE.
Our method leverages contrastive learning principles to train a model on unlabeled SAR data, extracting robust and generalizable features.
We introduce tailored data augmentation techniques specific to SAR imagery, such as sub-aperture decomposition and despeckling.
Our network competes with or surpasses other state-of-the-art methods in few-shot classification and segmentation tasks, even without being trained on the sensors used for the evaluation.
arXiv Detail & Related papers (2024-06-30T23:11:20Z) - Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture [23.375515181854254]
Self-Supervised Learning (SSL) methods can achieve various SAR Automatic Target Recognition (ATR) tasks with pre-training in large-scale unlabeled data.
SSL aims to construct supervision signals directly from the data, which minimizes the need for expensive expert annotation.
This study investigates an effective SSL method for SAR ATR, which can pave the way for a foundation model in SAR ATR.
arXiv Detail & Related papers (2023-11-26T01:05:55Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - FSD: Fully-Specialized Detector via Neural Architecture Search [2.149718433100702]
We first propose and examine a fully-automatic pipeline to design a fully-specialized detector (FSD)
On the DeepLesion dataset, extensive results show that FSD can achieve 3.1 mAP gain while using approximately 40% fewer parameters on binary lesion detection task.
arXiv Detail & Related papers (2023-05-26T05:41:20Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Small and large scale critical infrastructures detection based on deep
learning using high resolution orthogonal images [0.0]
This paper presents a smart dataset as well as a resolution-independent critical infrastructure detection system.
In particular, guided by the performance of the detection model, we built a dataset organized into two scales, small and large scale.
DetDSCI methodology achieves up to 37,53% F1 improvement with respect to the baseline detector.
arXiv Detail & Related papers (2021-05-25T11:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.