Computer aided diagnosis system for Alzheimers disease using principal component analysis and machine learning based approaches
- URL: http://arxiv.org/abs/2405.09553v1
- Date: Mon, 15 Apr 2024 15:49:11 GMT
- Title: Computer aided diagnosis system for Alzheimers disease using principal component analysis and machine learning based approaches
- Authors: Lilia Lazli,
- Abstract summary: Alzheimers disease (AD) is a severe neurological brain disorder.
It is not curable, but earlier detection can help improve symptoms in a great deal.
The machine learning based approaches are popular and well motivated models for medical image processing tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Alzheimers disease (AD) is a severe neurological brain disorder. It is not curable, but earlier detection can help improve symptoms in a great deal. The machine learning based approaches are popular and well motivated models for medical image processing tasks such as computer-aided diagnosis. These techniques can improve the process for accurate diagnosis of AD. In this paper, we investigate the performance of these techniques for AD detection and classification using brain MRI and PET images from the OASIS database. The proposed system takes advantage of the artificial neural network and support vector machines as classifiers, and principal component analysis as a feature extraction technique. The results indicate that the combined scheme achieves good accuracy and offers a significant advantage over the other approaches.
Related papers
- Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population [5.103059984821972]
We introduce a novel methodology for the classification of demented and non-demented elderly patients using 3D brain Magnetic Resonance Imaging (MRI) scans.
Our approach features a unique technique for selectively processing MRI slices, focusing on the most relevant brain regions and excluding less informative sections.
This methodology is complemented by a confidence-based classification committee composed of three custom deep learning models.
arXiv Detail & Related papers (2024-07-24T14:48:40Z) - Attention-based Efficient Classification for 3D MRI Image of Alzheimer's
Disease [2.6793044027881865]
This study proposes a novel Alzheimer's disease detection model based on Convolutional Neural Networks.
The experimental results indicate that the employed 2D fusion algorithm effectively improves the model's training expense.
arXiv Detail & Related papers (2024-01-25T12:18:46Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis.
This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease.
arXiv Detail & Related papers (2023-07-31T16:35:35Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Review of Machine Learning Algorithms for Brain Stroke Diagnosis and
Prognosis by EEG Analysis [50.591267188664666]
Strokes are the leading cause of adult disability in the United States.
Brain-Computer Interfaces (BCIs) help the patient either restore neurologic pathways or effectively communicate with an electronic prosthetic.
The various machine learning techniques and algorithms that are addressed and combined with BCIs technology show that the use of BCIs for stroke treatment is a promising and rapidly expanding field.
arXiv Detail & Related papers (2020-08-06T19:50:29Z) - Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of
Autism Spectrum Disorder: A Review [14.639115166647871]
Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures.
Deep learning (DL) methods for diagnosis of ASD have been focused on neuroimaging-based approaches.
In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated.
arXiv Detail & Related papers (2020-07-02T17:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.