Generalized Holographic Reduced Representations
- URL: http://arxiv.org/abs/2405.09689v1
- Date: Wed, 15 May 2024 20:37:48 GMT
- Title: Generalized Holographic Reduced Representations
- Authors: Calvin Yeung, Zhuowen Zou, Mohsen Imani,
- Abstract summary: Generalized Holographic Reduced Representations (GHRR) is an extension of Fourier Holographic Reduced Representations (FHRR)
GHRR introduces a flexible, non-commutative binding operation, enabling improved encoding of complex data structures.
- Score: 6.161066669674775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has achieved remarkable success in recent years. Central to its success is its ability to learn representations that preserve task-relevant structure. However, massive energy, compute, and data costs are required to learn general representations. This paper explores Hyperdimensional Computing (HDC), a computationally and data-efficient brain-inspired alternative. HDC acts as a bridge between connectionist and symbolic approaches to artificial intelligence (AI), allowing explicit specification of representational structure as in symbolic approaches while retaining the flexibility of connectionist approaches. However, HDC's simplicity poses challenges for encoding complex compositional structures, especially in its binding operation. To address this, we propose Generalized Holographic Reduced Representations (GHRR), an extension of Fourier Holographic Reduced Representations (FHRR), a specific HDC implementation. GHRR introduces a flexible, non-commutative binding operation, enabling improved encoding of complex data structures while preserving HDC's desirable properties of robustness and transparency. In this work, we introduce the GHRR framework, prove its theoretical properties and its adherence to HDC properties, explore its kernel and binding characteristics, and perform empirical experiments showcasing its flexible non-commutativity, enhanced decoding accuracy for compositional structures, and improved memorization capacity compared to FHRR.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations [35.71656738800783]
Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data.<n>Recent approaches address this by introducing additional features along rigid geometric structures.<n>We propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR)
arXiv Detail & Related papers (2025-06-07T16:45:17Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.
We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.
ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
In this paper, we introduce a novel framework of sparse latent feature models for knowledge graphs.
Our approach not only effectively completes missing triples but also provides clear interpretability of the latent structures.
Our method significantly improves performance by revealing latent communities and producing interpretable representations.
arXiv Detail & Related papers (2024-11-24T03:17:37Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Deep Common Feature Mining for Efficient Video Semantic Segmentation [29.054945307605816]
We present Deep Common Feature Mining (DCFM) for video semantic segmentation.
DCFM explicitly decomposes features into two complementary components.
We show that our method has a superior balance between accuracy and efficiency.
arXiv Detail & Related papers (2024-03-05T06:17:59Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - CRC-RL: A Novel Visual Feature Representation Architecture for
Unsupervised Reinforcement Learning [7.4010632660248765]
A novel architecture is proposed that uses a heterogeneous loss function, called CRC loss, to learn improved visual features.
The proposed architecture, called CRC-RL, is shown to outperform the existing state-of-the-art methods on the challenging Deep mind control suite environments.
arXiv Detail & Related papers (2023-01-31T08:41:18Z) - Symbolic Visual Reinforcement Learning: A Scalable Framework with
Object-Level Abstraction and Differentiable Expression Search [63.3745291252038]
We propose DiffSES, a novel symbolic learning approach that discovers discrete symbolic policies.
By using object-level abstractions instead of raw pixel-level inputs, DiffSES is able to leverage the simplicity and scalability advantages of symbolic expressions.
Our experiments demonstrate that DiffSES is able to generate symbolic policies that are simpler and more scalable than state-of-the-art symbolic RL methods.
arXiv Detail & Related papers (2022-12-30T17:50:54Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z) - Structural Deep Clustering Network [45.370272344031285]
We propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering.
Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer.
In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder.
arXiv Detail & Related papers (2020-02-05T04:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.