論文の概要: Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation
- arxiv url: http://arxiv.org/abs/2410.09403v1
- Date: Sat, 12 Oct 2024 07:16:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:34:09.541644
- Title: Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation
- Title(参考訳): マルチエージェントシステムは科学的なアイデアを生み出す可能性を秘めている
- Authors: Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli Ouyang, Nanqing Dong,
- Abstract要約: VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新規で影響力のある科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 48.29699224989952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of scientific progress requires innovative tools that can accelerate discovery. While recent AI methods, particularly large language models (LLMs), have shown promise in tasks such as hypothesis generation and experimental design, they fall short in replicating the collaborative nature of real-world scientific practices, where diverse teams of experts work together to tackle complex problems. To address the limitation, we propose an LLM-based multi-agent system, i.e., Virtual Scientists (VirSci), designed to mimic the teamwork inherent in scientific research. VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas. Through comprehensive experiments, we demonstrate that this multi-agent approach outperforms the state-of-the-art method in producing novel and impactful scientific ideas, showing potential in aligning with key insights in the Science of Science field. Our findings suggest that integrating collaborative agents can lead to more innovative scientific outputs, offering a robust system for autonomous scientific discovery.
- Abstract(参考訳): 科学的進歩の急速な進歩には、発見を加速する革新的なツールが必要である。
最近のAI手法、特に大きな言語モデル(LLM)は仮説生成や実験設計のようなタスクにおいて有望であるが、様々な専門家チームが複雑な問題に取り組むために協力して働く現実世界の科学的プラクティスの協調的な性質を複製するには不足している。
この制限に対処するため,LLMベースのマルチエージェントシステム,すなわちVirSci(VirSci)を提案する。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
総合的な実験を通じて、このマルチエージェントアプローチは、新しい、インパクトのある科学的アイデアを生み出す上で最先端の手法よりも優れており、サイエンス・オブ・サイエンスの分野における重要な洞察と整合する可能性を示している。
我々の研究結果は、協調エージェントを統合することで、より革新的な科学的成果が得られ、自律的な科学的発見のための堅牢なシステムを提供できることを示唆している。
関連論文リスト
- AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
大型言語モデル(LLM)は、科学的な発見を加速する可能性についての楽観主義を喚起した。
LLMシステムは、新しい専門家レベルのアイデアを生み出すための第一歩を踏み出すことができるという評価はない。
論文 参考訳(メタデータ) (2024-09-06T08:25:03Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SciOps: Achieving Productivity and Reliability in Data-Intensive Research [0.8414742293641504]
科学者たちは、実験や研究の目標を拡大するために、機器、自動化、協調ツールの進歩をますます活用している。
神経科学を含む様々な科学分野は、コラボレーション、インスピレーション、自動化を強化するための重要な技術を採用してきた。
厳密な科学的操作の原理を説明する5段階の能力成熟度モデルを導入する。
論文 参考訳(メタデータ) (2023-12-29T21:37:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。