Unsupervised Work Behavior Pattern Extraction Based on Hierarchical Probabilistic Model
- URL: http://arxiv.org/abs/2405.09838v1
- Date: Thu, 16 May 2024 06:31:02 GMT
- Title: Unsupervised Work Behavior Pattern Extraction Based on Hierarchical Probabilistic Model
- Authors: Issei Saito, Tomoaki Nakamura, Toshiyuki Hatta, Wataru Fujita, Shintaro Watanabe, Shotaro Miwa,
- Abstract summary: We extend the hidden semi-Markov model (GP-HSMM) to enable the rapid and automated analysis of worker behavior without pre-training.
The proposed model is a probabilistic model that hierarchically connects GP-HSMM and HSMM.
It mutually infers the parameters between the GP-HSMM and HSMM, resulting in accurate motion pattern extraction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolving consumer demands and market trends have led to businesses increasingly embracing a production approach that prioritizes flexibility and customization. Consequently, factory workers must engage in tasks that are more complex than before. Thus, productivity depends on each worker's skills in assembling products. Therefore, analyzing the behavior of a worker is crucial for work improvement. However, manual analysis is time consuming and does not provide quick and accurate feedback. Machine learning have been attempted to automate the analyses; however, most of these methods need several labels for training. To this end, we extend the Gaussian process hidden semi-Markov model (GP-HSMM), to enable the rapid and automated analysis of worker behavior without pre-training. The model does not require labeled data and can automatically and accurately segment continuous motions into motion classes. The proposed model is a probabilistic model that hierarchically connects GP-HSMM and HSMM, enabling the extraction of behavioral patterns with different granularities. Furthermore, it mutually infers the parameters between the GP-HSMM and HSMM, resulting in accurate motion pattern extraction. We applied the proposed method to motion data in which workers assembled products at an actual production site. The accuracy of behavior pattern extraction was evaluated using normalized Levenshtein distance (NLD). The smaller the value of NLD, the more accurate is the pattern extraction. The NLD of motion patterns captured by GP-HSMM and HSMM layers in our proposed method was 0.50 and 0.33, respectively, which are the smallest compared to that of the baseline methods.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes [19.664090734076712]
Machine unlearning (MU) makes a well-trained model behave as if it had never been trained on specific data.
We propose an alternating optimization algorithm that unifies the tasks of unlearning and relabeling.
The algorithm's effectiveness, confirmed through numerical experiments, highlights its superior performance in unlearning across various scenarios.
arXiv Detail & Related papers (2024-10-11T06:17:17Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization [0.0]
We introduce a novel mathematically sound method that integrates theoretical process models with interrelated minimal Hidden Markov Models.
Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection.
arXiv Detail & Related papers (2022-10-03T16:19:27Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
We propose a novel containerized directed graph framework to support end-to-end Machine Learning workflow management.
The framework allows defining and deploying ML in containers, tracking their metadata, checking their behavior in production, and improving the models by using both learned and human-provided knowledge.
arXiv Detail & Related papers (2021-11-04T17:01:12Z) - Surrogate Modelling for Injection Molding Processes using Machine
Learning [0.23090185577016442]
Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects.
We propose a baseline for a data processing pipeline that includes the extraction of data from Moldflow simulation projects.
We evaluate machine learning models for fill time and deflection distribution prediction and provide baseline values of MSE and RMSE metrics.
arXiv Detail & Related papers (2021-07-30T12:13:52Z) - Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis
of Head and Prompt Tuning [66.44344616836158]
We propose an analysis framework that links the pretraining and downstream tasks with an underlying latent variable generative model of text.
We show that 1) under certain non-degeneracy conditions on the HMM, simple classification heads can solve the downstream task, 2) prompt tuning obtains downstream guarantees with weaker non-degeneracy conditions, and 3) our recovery guarantees for the memory-augmented HMM are stronger than for the vanilla HMM.
arXiv Detail & Related papers (2021-06-17T03:31:47Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
We present momentum pseudo-labeling (MPL) as a simple yet effective strategy for semi-supervised speech recognition.
MPL consists of a pair of online and offline models that interact and learn from each other, inspired by the mean teacher method.
The experimental results demonstrate that MPL effectively improves over the base model and is scalable to different semi-supervised scenarios.
arXiv Detail & Related papers (2021-06-16T16:24:55Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.