A novel Reservoir Architecture for Periodic Time Series Prediction
- URL: http://arxiv.org/abs/2405.10102v1
- Date: Thu, 16 May 2024 13:55:53 GMT
- Title: A novel Reservoir Architecture for Periodic Time Series Prediction
- Authors: Zhongju Yuan, Geraint Wiggins, Dick Botteldooren,
- Abstract summary: This paper introduces a novel approach to predicting periodic time series using reservoir computing.
The model is tailored to deliver precise forecasts of rhythms, a crucial aspect for tasks such as generating musical rhythm.
Our network accurately predicts rhythmic signals within the human frequency perception range.
- Score: 4.7368661961661775
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach to predicting periodic time series using reservoir computing. The model is tailored to deliver precise forecasts of rhythms, a crucial aspect for tasks such as generating musical rhythm. Leveraging reservoir computing, our proposed method is ultimately oriented towards predicting human perception of rhythm. Our network accurately predicts rhythmic signals within the human frequency perception range. The model architecture incorporates primary and intermediate neurons tasked with capturing and transmitting rhythmic information. Two parameter matrices, denoted as c and k, regulate the reservoir's overall dynamics. We propose a loss function to adapt c post-training and introduce a dynamic selection (DS) mechanism that adjusts $k$ to focus on areas with outstanding contributions. Experimental results on a diverse test set showcase accurate predictions, further improved through real-time tuning of the reservoir via c and k. Comparative assessments highlight its superior performance compared to conventional models.
Related papers
- Analysis and Forecasting of the Dynamics of a Floating Wind Turbine Using Dynamic Mode Decomposition [0.0]
This article presents a data-driven equation-free modeling of the dynamics of a hexafloat floating offshore wind turbine based on the Dynamic Mode Decomposition (DMD)
A forecasting algorithm for the motions, accelerations, and forces acting on the floating system is developed.
Results show the approach's capability for short-term future estimates of the system's state, which can be used real-time prediction and control.
arXiv Detail & Related papers (2024-11-08T18:38:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Oscillations enhance time-series prediction in reservoir computing with feedback [3.3686252536891454]
Reservoir computing is a machine learning framework used for modeling the brain.
It is difficult to accurately reproduce the long-term target time series because the reservoir system becomes unstable.
This study proposes oscillation-driven reservoir computing (ODRC) with feedback.
arXiv Detail & Related papers (2024-06-05T02:30:29Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - A Systematic Exploration of Reservoir Computing for Forecasting Complex
Spatiotemporal Dynamics [0.0]
Reservoir computer (RC) is a type of recurrent neural network that has demonstrated success in prediction architecture of intrinsicly chaotic dynamical systems.
We explore the architecture and design choices for a "best in class" RC for a number of characteristic dynamical systems.
We show the application of these choices in scaling up to larger models using localization.
arXiv Detail & Related papers (2022-01-21T22:31:12Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
arXiv Detail & Related papers (2021-10-09T06:26:42Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.