論文の概要: Towards Consistent and Explainable Motion Prediction using Heterogeneous Graph Attention
- arxiv url: http://arxiv.org/abs/2405.10134v1
- Date: Thu, 16 May 2024 14:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:02:34.202456
- Title: Towards Consistent and Explainable Motion Prediction using Heterogeneous Graph Attention
- Title(参考訳): 不均一グラフアテンションを用いた一貫性と説明可能な動き予測に向けて
- Authors: Tobias Demmler, Andreas Tamke, Thao Dang, Karsten Haug, Lars Mikelsons,
- Abstract要約: 本稿では,予測軌道を実際の地図に投影する改良モジュールを提案する。
また,エージェントと環境のすべての関係を単一の統合グラフアテンションネットワークで処理する新しいシーンエンコーダを提案する。
- 参考スコア(独自算出の注目度): 0.17476232824732776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, accurately interpreting the movements of other road users and leveraging this knowledge to forecast future trajectories is crucial. This is typically achieved through the integration of map data and tracked trajectories of various agents. Numerous methodologies combine this information into a singular embedding for each agent, which is then utilized to predict future behavior. However, these approaches have a notable drawback in that they may lose exact location information during the encoding process. The encoding still includes general map information. However, the generation of valid and consistent trajectories is not guaranteed. This can cause the predicted trajectories to stray from the actual lanes. This paper introduces a new refinement module designed to project the predicted trajectories back onto the actual map, rectifying these discrepancies and leading towards more consistent predictions. This versatile module can be readily incorporated into a wide range of architectures. Additionally, we propose a novel scene encoder that handles all relations between agents and their environment in a single unified heterogeneous graph attention network. By analyzing the attention values on the different edges in this graph, we can gain unique insights into the neural network's inner workings leading towards a more explainable prediction.
- Abstract(参考訳): 自動運転においては、他の道路利用者の動きを正確に解釈し、この知識を活用して将来の軌道を予測することが重要である。
これは典型的には、地図データと様々なエージェントの追跡軌跡の統合によって達成される。
多くの方法論がこれらの情報を各エージェントの特異な埋め込みに組み合わせ、将来の振る舞いを予測するのに使用される。
しかし、これらの手法は符号化プロセス中に正確な位置情報を失う可能性があるという点で顕著な欠点がある。
エンコーディングには一般的な地図情報が含まれる。
しかし、有効かつ一貫した軌道の生成は保証されない。
これにより、予測された軌道が実際の車線から逸脱する可能性がある。
本稿では,予測軌道を実際の地図に投影し,それらの相違を補正し,より一貫した予測へと導くために,新たな改良モジュールを提案する。
この汎用モジュールは、容易に広範囲のアーキテクチャに組み込むことができる。
さらに,エージェントと環境の関係を一元的なグラフアテンションネットワークで処理する新しいシーンエンコーダを提案する。
このグラフの異なるエッジの注意値を分析することで、ニューラルネットワークの内部動作に関するユニークな洞察を得ることができ、より説明可能な予測へと導くことができる。
関連論文リスト
- SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs [3.733790302392792]
自動運転におけるトレイ予測は、運転シーンのすべての関連状況の正確な表現に依存している。
本稿では,交通シーングラフの推論によるマルチモーダル軌道の予測手法であるSemanticFormerを提案する。
論文 参考訳(メタデータ) (2024-04-30T09:11:04Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNetは、新しい動的軌道予測手法である。
逐次予測間の動的関係を自動的に符号化する履歴予測アテンションモジュールを提案する。
私たちのコードはhttps://github.com/XiaolongTang23/HPNetで利用可能です。
論文 参考訳(メタデータ) (2024-04-09T14:42:31Z) - nuScenes Knowledge Graph -- A comprehensive semantic representation of
traffic scenes for trajectory prediction [6.23221362105447]
交通シーンにおける軌道予測は、周囲の車両の挙動を正確に予測する。
車両の走行経路、道路トポロジー、車線分割器、交通規則など、文脈情報を考慮することが重要である。
本稿では,知識グラフを用いて交通シーン内の多様なエンティティとその意味的関係をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T10:40:34Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究は、交差点で複数の車両の予測を行うために、現在の状態と意図された方向を知ることに依存する。
この情報を車両間で送るメッセージは、それぞれがより総合的な環境概要を提供する。
論文 参考訳(メタデータ) (2023-01-06T15:13:23Z) - GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting [121.42898228997538]
精度や一般化を犠牲にすることなく、全てのエージェントとマップに対して効率的な共有符号化を提案する。
不均一空間グラフにおけるエージェントとマップ要素間の幾何学的関係を表現するために、ペアワイズ相対的な位置符号化を利用する。
我々のデコーダは視点非依存であり、レーングラフ上でエージェント目標を予測し、多様かつコンテキスト対応のマルチモーダル予測を可能にする。
論文 参考訳(メタデータ) (2022-11-04T16:10:50Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - LaneRCNN: Distributed Representations for Graph-Centric Motion
Forecasting [104.8466438967385]
LaneRCNNはグラフ中心のモーション予測モデルです。
アクターごとのローカルレーングラフ表現を学び、過去の動きとローカルマップのトポロジをエンコードします。
我々はレーングラフに基づいて出力軌跡をパラメータ化し,よりアメニブルな予測パラメータ化を行う。
論文 参考訳(メタデータ) (2021-01-17T11:54:49Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
軌道予測は、安全な将来の動きを計画するための応用に不可欠である。
我々は Attentive Maps Network (AMENet) というエンドツーエンド生成モデルを提案する。
AMENetはエージェントの動作と相互作用情報をエンコードし、高精度でリアルなマルチパス軌道予測を行う。
論文 参考訳(メタデータ) (2020-06-15T10:00:07Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では, セマンティクスとドメイン知識を活かして, 様々な運転環境に対する新しい汎用表現を提案する。
論文 参考訳(メタデータ) (2020-04-07T00:34:36Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。