論文の概要: Speaker Verification in Agent-Generated Conversations
- arxiv url: http://arxiv.org/abs/2405.10150v1
- Date: Thu, 16 May 2024 14:46:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 13:52:46.361860
- Title: Speaker Verification in Agent-Generated Conversations
- Title(参考訳): エージェント生成会話における話者検証
- Authors: Yizhe Yang, Heyan Huang, Palakorn Achananuparp, Jing Jiang, Ee-Peng Lim,
- Abstract要約: 近年の大型言語モデル (LLM) の成功は、様々な話者の特徴やスタイルに合わせたロールプレイング・会話エージェントを開発し、汎用的・特殊な対話タスクを遂行する能力を高めるために広く関心を集めている。
本研究では,2つの発話が同一話者から発せられるかどうかを検証することを目的とした,エージェント生成会話における話者検証という,新たな評価課題を紹介する。
- 参考スコア(独自算出の注目度): 47.6291644653831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of large language models (LLMs) has attracted widespread interest to develop role-playing conversational agents personalized to the characteristics and styles of different speakers to enhance their abilities to perform both general and special purpose dialogue tasks. However, the ability to personalize the generated utterances to speakers, whether conducted by human or LLM, has not been well studied. To bridge this gap, our study introduces a novel evaluation challenge: speaker verification in agent-generated conversations, which aimed to verify whether two sets of utterances originate from the same speaker. To this end, we assemble a large dataset collection encompassing thousands of speakers and their utterances. We also develop and evaluate speaker verification models under experiment setups. We further utilize the speaker verification models to evaluate the personalization abilities of LLM-based role-playing models. Comprehensive experiments suggest that the current role-playing models fail in accurately mimicking speakers, primarily due to their inherent linguistic characteristics.
- Abstract(参考訳): 近年の大型言語モデル (LLM) の成功は、様々な話者の特徴やスタイルに合わせたロールプレイング・会話エージェントを開発し、汎用的・特殊な対話タスクを遂行する能力を高めるために広く関心を集めている。
しかしながら、人間やLLMが行うかにかかわらず、生成した発話を話者にパーソナライズする能力は十分に研究されていない。
このギャップを埋めるために、エージェント生成会話における話者検証という新たな評価課題を導入する。
この目的のために、何千もの話者とその発話を含む大規模なデータセットコレクションを組み立てる。
また,実験環境下での話者検証モデルの開発と評価を行った。
さらに,LLMに基づくロールプレイングモデルのパーソナライズ能力を評価するために,話者検証モデルを利用する。
総合的な実験から、現在のロールプレイングモデルは話者を正確に模倣できないことが示唆される。
関連論文リスト
- SPECTRUM: Speaker-Enhanced Pre-Training for Long Dialogue Summarization [48.284512017469524]
マルチターン対話は、その長さとターンテイクな会話の存在によって特徴づけられる。
伝統的な言語モデルは、しばしばそれらの対話の特徴を通常のテキストとして扱うことによって見落としている。
長文対話要約のための話者強化事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T04:50:00Z) - ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis [5.824018496599849]
多数の話者をモデル化する新しい手法を提案する。
訓練されたマルチスピーカーモデルのように、話者の全体的な特徴を詳細に表現することができる。
論文 参考訳(メタデータ) (2023-11-20T13:13:24Z) - Joining the Conversation: Towards Language Acquisition for Ad Hoc Team
Play [1.370633147306388]
本稿では,アドホックチームプレイ問題の特定の形態として,協調言語獲得の問題を提案し,考察する。
本稿では, 話者の意図と聞き手の意味を, 言語利用者チーム間のコミュニケーションの観察から推定する確率論的モデルを提案する。
論文 参考訳(メタデータ) (2023-05-20T16:59:27Z) - Enhanced Speaker-aware Multi-party Multi-turn Dialogue Comprehension [43.352833140317486]
マルチパーティ・マルチターン・ダイアログの理解は前例のない課題をもたらす。
既存のほとんどのメソッドは、会話コンテキストをプレーンテキストとして扱う。
マスキングアテンションと異種グラフネットワークを用いた話者認識モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T07:12:22Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
本研究では,異なる話者表現を調査し,事前学習可能な話者表現を統合することを提案する。
FastSpeech 2モデルと事前訓練された話者表現と学習可能な話者表現を組み合わせることで、少数の話者に対して大きな一般化能力を示す。
論文 参考訳(メタデータ) (2021-03-06T10:14:33Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z) - Active Speakers in Context [88.22935329360618]
能動話者検出のための現在の手法は、単一話者からの短期音声視覚情報をモデル化することに焦点を当てている。
本稿では,複数話者間の関係を長期にわたってモデル化する新しい表現であるActive Speaker Contextを紹介する。
実験の結果,構造的特徴アンサンブルはすでにアクティブな話者検出性能の恩恵を受けていることがわかった。
論文 参考訳(メタデータ) (2020-05-20T01:14:23Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。