Driven-dissipative topological phases in parametric resonator arrays
- URL: http://arxiv.org/abs/2207.13715v3
- Date: Wed, 17 May 2023 09:46:05 GMT
- Title: Driven-dissipative topological phases in parametric resonator arrays
- Authors: \'Alvaro G\'omez-Le\'on and Tom\'as Ramos and Alejandro
Gonz\'alez-Tudela and Diego Porras
- Abstract summary: We find two phases of topological amplification, both with directional transport and exponential gain with the number of sites, and one of them featuring squeezing.
We characterize the resilience to disorder of the different phases and their stability, gain, and noise-to-signal ratio.
We discuss their experimental implementation with state-of-the-art techniques.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the phenomena of topological amplification in arrays of parametric
oscillators. We find two phases of topological amplification, both with
directional transport and exponential gain with the number of sites, and one of
them featuring squeezing. We also find a topologically trivial phase with
zero-energy modes which produces amplification but lacks the robust topological
protection of the others. We characterize the resilience to disorder of the
different phases and their stability, gain, and noise-to-signal ratio. Finally,
we discuss their experimental implementation with state-of-the-art techniques.
Related papers
- Floquet topological phases with time-reversal and space inversion symmetries and dynamical detection of topological charges [6.360473053262561]
It is possible to have strong topological insulator, second-order topological insulator and hybrid-order topological insulator in a single four band system.
This study provides the theoretical basis for novel topological insulator that possess hybrid-order boundary states beyond the conventional regimes.
arXiv Detail & Related papers (2024-06-12T13:10:30Z) - Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings [41.94295877935867]
We show the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel.
We also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings.
arXiv Detail & Related papers (2024-05-16T15:16:33Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Floquet topological phases with large winding number [9.104339861886608]
We propose a novel driving scheme that breaks rotation symmetry but maintains inversion symmetry of the instantaneous Hamiltonian.
We discover a novel type of anomalous Floquet topological phase with winding number larger than 1.
arXiv Detail & Related papers (2024-01-02T15:34:59Z) - Optomechanical realization of the bosonic Kitaev-Majorana chain [0.0]
We report the experimental realization of its bosonic analogue in a nano-optomechanical network.
We observe several extraordinary phenomena in the bosonic dynamics and transport.
We present an experimental demonstration of an exponentially enhanced response to a small perturbation as a consequence of non-Hermitian topology.
arXiv Detail & Related papers (2023-09-11T21:10:22Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Electric circuit emulation of topological transitions driven by quantum
statistics [0.0]
We predict the topological transition in the two-particle interacting system driven by the particles' quantum statistics.
As a toy model, we investigate an extended one-dimensional Hubbard model with two anyonic excitations obeying fractional quantum statistics.
We develop a rigorous method to emulate the eigenmodes and eigenenergies of anyon pairs with resonant electric circuits.
arXiv Detail & Related papers (2021-08-23T22:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.