論文の概要: UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning
- arxiv url: http://arxiv.org/abs/2405.10343v1
- Date: Wed, 15 May 2024 09:20:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:52:48.490104
- Title: UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning
- Title(参考訳): UniCorn: 多視点分子表現学習のための統一コントラスト学習アプローチ
- Authors: Shikun Feng, Yuyan Ni, Minghao Li, Yanwen Huang, Zhi-Ming Ma, Wei-Ying Ma, Yanyan Lan,
- Abstract要約: 分子ビューを3段階に分けた新しい事前学習フレームワークUniCornを提案する。
量子、物理化学的、生物学的タスクにわたるSOTAのパフォーマンスは、包括的なアブレーション研究とともに、UniCornの普遍性と有効性を検証する。
- 参考スコア(独自算出の注目度): 31.445533039355166
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, a noticeable trend has emerged in developing pre-trained foundation models in the domains of CV and NLP. However, for molecular pre-training, there lacks a universal model capable of effectively applying to various categories of molecular tasks, since existing prevalent pre-training methods exhibit effectiveness for specific types of downstream tasks. Furthermore, the lack of profound understanding of existing pre-training methods, including 2D graph masking, 2D-3D contrastive learning, and 3D denoising, hampers the advancement of molecular foundation models. In this work, we provide a unified comprehension of existing pre-training methods through the lens of contrastive learning. Thus their distinctions lie in clustering different views of molecules, which is shown beneficial to specific downstream tasks. To achieve a complete and general-purpose molecular representation, we propose a novel pre-training framework, named UniCorn, that inherits the merits of the three methods, depicting molecular views in three different levels. SOTA performance across quantum, physicochemical, and biological tasks, along with comprehensive ablation study, validate the universality and effectiveness of UniCorn.
- Abstract(参考訳): 近年,CV と NLP の領域における事前学習基盤モデルの開発において,顕著な傾向がみられた。
しかし, 分子前訓練には, 様々な分野の分子課題に効果的に適用できる普遍的なモデルが欠如している。
さらに、2Dグラフマスキング、2D-3Dコントラスト学習、3D denoisingを含む既存の事前学習手法の深い理解が欠如し、分子基盤モデルの進歩を妨げている。
本研究では、コントラスト学習のレンズを通して、既存の事前学習手法の統一的な理解を提供する。
したがって、それらの区別は、特定の下流のタスクに有益な分子の異なる視点をクラスタリングすることにある。
完全かつ汎用的な分子表現を実現するために,3つの手法の利点を継承し,分子ビューを3つの異なるレベルで表現する,UniCornという新しい事前学習フレームワークを提案する。
量子、物理化学的、生物学的タスクにわたるSOTAのパフォーマンスは、包括的なアブレーション研究とともに、UniCornの普遍性と有効性を検証する。
関連論文リスト
- UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [45.9401235464876]
コンフォーマーアンサンブルを用いた学習の可能性を徹底的に評価するための,最初のMoleculAR Conformer Ensemble Learningベンチマークを導入する。
その結果,コンバータ空間からの直接学習は,様々なタスクやモデルの性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-09-29T20:06:46Z) - Unified Molecular Modeling via Modality Blending [35.16755562674055]
我々は,新しい「Blund-then-predict」自己教師型学習法(MoleBLEND)を導入する。
MoleBLENDは、異なるモジュラリティからの原子関係をマトリックス符号化のための1つの統一された関係にブレンドし、2D構造と3D構造の両方のモダリティ固有情報を復元する。
実験によると、MoleBLENDは主要な2D/3Dベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-07-12T15:27:06Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - Supervised Pretraining for Molecular Force Fields and Properties
Prediction [16.86839767858162]
本研究では, 原子電荷と3次元ジオメトリーを入力とし, 分子エネルギーをラベルとする8800万分子のデータセット上で, ニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前訓練されたモデルを微調整すると、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスが大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-23T08:36:50Z) - Bidirectional Generation of Structure and Properties Through a Single
Molecular Foundation Model [44.60174246341653]
本稿では, 構造と生化学的性質を組み込んだ, 新規なマルチモーダル分子事前学習モデルを提案する。
提案するデータハンドリングおよびトレーニング目的のモデルパイプラインは、共通埋め込み空間における構造/プロパティの特徴を整合させる。
これらのコントリビューションは相乗的知識を生み出し、単一のモデルでマルチモーダルと非モーダルの両方の下流タスクに取り組むことができる。
論文 参考訳(メタデータ) (2022-11-19T05:16:08Z) - Improving Molecular Pretraining with Complementary Featurizations [20.86159731100242]
分子プレトレーニング(英: molecular pretraining)は、計算化学と薬物発見における様々な課題を解決するためのパラダイムである。
化学情報を異なる方法で伝達できることが示される。
我々は, 簡易で効果的な分子事前学習フレームワーク(MOCO)を提案する。
論文 参考訳(メタデータ) (2022-09-29T21:11:09Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。