論文の概要: Track Boosting and Synthetic Data Aided Drone Detection
- arxiv url: http://arxiv.org/abs/2111.12389v1
- Date: Wed, 24 Nov 2021 10:16:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 18:58:19.169302
- Title: Track Boosting and Synthetic Data Aided Drone Detection
- Title(参考訳): トラックブーピングと合成データを用いたドローン検出
- Authors: Fatih Cagatay Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, Sinan Onur
Altinuc
- Abstract要約: 本手法は, YOLOv5モデルを実データおよび合成データで微調整することにより, ドローン検出問題にアプローチする。
以上の結果から,合成データの最適なサブセットで実データを増やすことで,性能が向上する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the usage of drones increases with lowered costs and improved drone
technology, drone detection emerges as a vital object detection task. However,
detecting distant drones under unfavorable conditions, namely weak contrast,
long-range, low visibility, requires effective algorithms. Our method
approaches the drone detection problem by fine-tuning a YOLOv5 model with real
and synthetically generated data using a Kalman-based object tracker to boost
detection confidence. Our results indicate that augmenting the real data with
an optimal subset of synthetic data can increase the performance. Moreover,
temporal information gathered by object tracking methods can increase
performance further.
- Abstract(参考訳): コストの低減とドローン技術の改善によってドローンの利用が増加すると、ドローン検出は重要な物体検出タスクとして現れる。
しかし、遠方のドローンを不利な条件、すなわち、弱いコントラスト、長距離、視界の低さで検出するには効果的なアルゴリズムが必要である。
提案手法は, リアルおよび合成データを用いてYOLOv5モデルを微調整し, 検出信頼性を高めることで, ドローン検出問題にアプローチする。
結果から,合成データの最適なサブセットによる実データの拡張は,性能の向上につながる可能性が示唆された。
さらに,オブジェクト追跡手法によって収集された時間的情報により,さらなる性能向上が期待できる。
関連論文リスト
- Drone Detection and Tracking with YOLO and a Rule-based Method [0.0]
公共空間におけるドローンの活動量の増加は、プライバシー保護と安全のために規制措置を必要とする。
検出タスクは通常、注釈付き画像データセットに基づいてトレーニングされたディープラーニングモデルによって自動化され、実行される。
本稿は、以前の研究に基づいて、すでに公開されたオープンソースデータセットを拡張します。
検出モデルは単一の画像入力に基づいており、単純なクロスコリレーションベースのトラッカーを用いて検出損失を低減し、ビデオのトラッキング性能を向上させる。
論文 参考訳(メタデータ) (2025-02-07T19:53:10Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Drone Detection using Deep Neural Networks Trained on Pure Synthetic Data [0.4369058206183195]
実世界のデータに転送する純粋に合成されたデータセットに基づいて訓練されたドローン検出高速RCNNモデルを提案する。
以上の結果から, 合成データを用いたドローン検出は, 収集コストを低減し, ラベル付け品質を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-13T23:09:53Z) - DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
ドローン検出は、画像の可視性や品質が好ましくないような、困難な物体検出タスクである。
私たちの仕事は、いくつかの改善を組み合わせることで、以前のアプローチを改善します。
提案された技術は、Drone vs. Bird Challengeで1位を獲得した。
論文 参考訳(メタデータ) (2024-06-30T20:49:56Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
本稿では,古典的追跡アルゴリズムを用いて,周囲の交通参加者を追跡する手法を提案する。
学習に基づく物体検出器はライダーとカメラのデータに適切に対応し、学習に基づく物体検出器は標準のレーダーデータ入力により劣っていることが示されている。
レーダセンサ技術の改良により、レーダの物体検出性能は大幅に改善されたが、レーダ点雲の広さによりライダーセンサに制限されている。
追跡アルゴリズムは、一貫したトラックを生成しながら、限られた検出品質を克服しなければならない。
論文 参考訳(メタデータ) (2024-06-03T05:46:23Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
本稿では,認識された物体検出モデルとの比較とともに,各種ドローンのデータセットを提供する。
異なるモデルの実験結果と各手法の記載が提供される。
論文 参考訳(メタデータ) (2024-05-16T18:56:46Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
本稿では、オブジェクト検出・追跡データセットとベンチマークのレビューを行い、手動アノテーションによる大規模ドローンによるオブジェクト検出・追跡データセットの収集の課題について論じる。
当社のVisDroneデータセットは、中国北部から南部にかけての14の都市部と郊外部で収集されたものです。
本稿では,ドローンにおける大規模物体検出・追跡の現場の現状を詳細に分析し,今後の方向性を提案するとともに,課題を結論づける。
論文 参考訳(メタデータ) (2020-01-16T00:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。