Simulation of a feedback-based algorithm for quantum optimization for a realistic neutral atom system with an optimized small-angle controlled-phase gate
- URL: http://arxiv.org/abs/2405.10451v3
- Date: Mon, 10 Jun 2024 21:47:53 GMT
- Title: Simulation of a feedback-based algorithm for quantum optimization for a realistic neutral atom system with an optimized small-angle controlled-phase gate
- Authors: S. X. Li, W. L. Mu, J. B. You, X. Q. Shao,
- Abstract summary: We present a scheme to implement an optimally tuned small-angle controlled-phase gate.
We show that the performance of FALQON implemented with small-angle controlled-phase gates exceeds that of FALQON utilizing CZ gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to the classical optimization process required by the quantum approximate optimization algorithm, FALQON, a feedback-based algorithm for quantum optimization [A. B. Magann {\it et al.,} {\color{blue}Phys. Rev. Lett. {\bf129}, 250502 (2022)}], enables one to obtain approximate solutions to combinatorial optimization problems without any classical optimization effort. In this study, we leverage the specifications of a recent experimental platform for the neutral atom system [Z. Fu {\it et al.,} {\color{blue}Phys. Rev. A {\bf105}, 042430 (2022)}] and present a scheme to implement an optimally tuned small-angle controlled-phase gate. By examining the 2- to 4-qubit FALQON algorithms in the Max-Cut problem and considering the spontaneous emission of the neutral atomic system, we have observed that the performance of FALQON implemented with small-angle controlled-phase gates exceeds that of FALQON utilizing CZ gates. This approach has the potential to significantly simplify the logic circuit required to simulate FALQON and effectively address the Max-Cut problem, which may pave a way for the experimental implementation of near-term noisy intermediate-scale quantum algorithms with neutral-atom systems.
Related papers
- Quantum algorithms for the variational optimization of correlated electronic states with stochastic reconfiguration and the linear method [0.0]
We present quantum algorithms for the variational optimization of wavefunctions correlated by products of unitary operators.
While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is in system size.
arXiv Detail & Related papers (2024-08-03T17:53:35Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - A Projection Operator-based Newton Method for the Trajectory
Optimization of Closed Quantum Systems [0.0]
This paper develops a new general purpose solver for quantum optimal control based on the PRojection Operator Newton method for Trajectory Optimization, or PRONTO.
Specifically, the proposed approach uses a projection operator to incorporate the Schr"odinger equation directly into the cost function, which is then minimized using a quasi-Newton method.
The resulting method guarantees monotonic convergence at every iteration and quadratic convergence in proximity of the solution.
arXiv Detail & Related papers (2021-11-16T21:49:23Z) - Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit
Commitment [2.8060379263058794]
We formulate and apply a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment.
Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization.
Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units.
arXiv Detail & Related papers (2021-10-25T03:37:34Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.