論文の概要: Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents
- arxiv url: http://arxiv.org/abs/2405.10467v1
- Date: Thu, 16 May 2024 23:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:21:37.698699
- Title: Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents
- Title(参考訳): エージェントデザインパターンカタログ:基礎モデルに基づくエージェントのためのアーキテクチャパターンのコレクション
- Authors: Yue Liu, Sin Kit Lo, Qinghua Lu, Liming Zhu, Dehai Zhao, Xiwei Xu, Stefan Harrer, Jon Whittle,
- Abstract要約: ファウンデーションモデルに対応した生成人工知能はエージェントの開発と実装を容易にする。
本稿では、コンテキスト、力、トレードオフを分析した16のアーキテクチャパターンからなるパターンカタログを提案する。
- 参考スコア(独自算出の注目度): 22.94671478021277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation model-enabled generative artificial intelligence facilitates the development and implementation of agents, which can leverage distinguished reasoning and language processing capabilities to takes a proactive, autonomous role to pursue users' goals. Nevertheless, there is a lack of systematic knowledge to guide practitioners in designing the agents considering challenges of goal-seeking (including generating instrumental goals and plans), such as hallucinations inherent in foundation models, explainability of reasoning process, complex accountability, etc. To address this issue, we have performed a systematic literature review to understand the state-of-the-art foundation model-based agents and the broader ecosystem. In this paper, we present a pattern catalogue consisting of 16 architectural patterns with analyses of the context, forces, and trade-offs as the outcomes from the previous literature review. The proposed catalogue can provide holistic guidance for the effective use of patterns, and support the architecture design of foundation model-based agents by facilitating goal-seeking and plan generation.
- Abstract(参考訳): ファウンデーションモデルに対応した生成人工知能はエージェントの開発と実装を促進し、優れた推論能力と言語処理能力を活用して、ユーザの目標を追求するために積極的に自律的な役割を果たすことができる。
それでも、基礎モデルに固有の幻覚、推論プロセスの説明可能性、複雑な説明責任など、目標探究の課題(道具的目標や計画の作成を含む)を考えるエージェントを設計する上で、実践者を指導する体系的な知識が欠如している。
この問題に対処するため、我々は、最先端の基盤モデルに基づくエージェントとより広範なエコシステムを理解するために、系統的な文献レビューを行った。
本稿では,前回の文献レビューの結果として,文脈,力,トレードオフを分析した16のアーキテクチャパターンからなるパターンカタログを提案する。
提案するカタログは,パターンを効果的に活用するための総合的なガイダンスを提供するとともに,目標探索と計画生成を容易にし,基礎モデルに基づくエージェントのアーキテクチャ設計を支援する。
関連論文リスト
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - A Taxonomy of Architecture Options for Foundation Model-based Agents: Analysis and Decision Model [25.78239568393706]
本稿では,基礎モデルに基づくエージェントのアーキテクチャに着目した分類法を提案する。
分類学は,これらの分類を統一し,詳細化することにより,基礎モデルに基づくエージェントの設計を改善することを目的としている。
論文 参考訳(メタデータ) (2024-08-06T03:10:52Z) - A Survey for Foundation Models in Autonomous Driving [10.315409708116865]
大規模言語モデルは、自動運転における計画とシミュレーションに寄与する。
ビジョンファウンデーションモデルは、3Dオブジェクトの検出やトラッキングといった重要なタスクに適応している。
多様な入力を統合するマルチモーダル基礎モデルは、例外的な視覚的理解と空間的推論を示す。
論文 参考訳(メタデータ) (2024-02-02T02:44:59Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
推論は、交渉、医療診断、刑事捜査など、様々な現実世界の環境において重要な役割を担っている。
本稿では,推論に適応する基礎モデルを提案する。
次に、基礎モデルにおける推論能力の出現の背後にある潜在的な将来方向を掘り下げる。
論文 参考訳(メタデータ) (2023-12-17T15:16:13Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
ファンデーションモデルに基づくエージェントは、ファンデーションモデルの能力から自律性を引き出す。
本稿では,基礎モデルに基づくエージェントの設計におけるガイダンスとして機能するパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-22T04:21:47Z) - A Reference Architecture for Designing Foundation Model based Systems [28.826700360670515]
ファンデーションモデルが将来のAIシステムの基本的なビルディングブロックになる、という広いコンセンサスがある。
基礎モデルをAIシステムに組み込むことは、責任と安全性に関する重要な懸念を提起する。
本稿では,基礎モデルに基づくシステム設計のためのパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-13T05:01:03Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
本稿では,エージェントが獲得した世界モデルに基づいて,本質的な動機付けを決定するための既存の手法について考察する。
提案した統合フレームワークは,学習を改善するために,世界モデルと本質的なモチベーションを用いてエージェントのアーキテクチャを記述する。
論文 参考訳(メタデータ) (2023-01-24T15:13:02Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
本稿では,様々な視点やレベルにまたがる参照モデルを記述するための全体論的アプローチを提案する。
メリットには、参照設計の開始時点ですでに考慮されているパフォーマンスパラメータによる、機能カバレッジのエンドツーエンドトレーサビリティが含まれる。
論文 参考訳(メタデータ) (2022-11-21T13:41:07Z) - Abstract Interpretation for Generalized Heuristic Search in Model-Based
Planning [50.96320003643406]
ドメイン・ジェネラル・モデル・ベース・プランナーは、しばしば記号的世界モデルの緩和を通じて探索を構築することによって一般性を導出する。
抽象解釈がこれらの抽象化の統一フレームワークとして機能し、よりリッチな世界モデルに探索の範囲を広げる方法について説明する。
また、これらは学習と統合することができ、エージェントは抽象的な情報を通じて、新しい世界のモデルで計画を開始することができる。
論文 参考訳(メタデータ) (2022-08-05T00:22:11Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。