論文の概要: A Taxonomy of Architecture Options for Foundation Model-based Agents: Analysis and Decision Model
- arxiv url: http://arxiv.org/abs/2408.02920v1
- Date: Tue, 6 Aug 2024 03:10:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 15:09:28.194327
- Title: A Taxonomy of Architecture Options for Foundation Model-based Agents: Analysis and Decision Model
- Title(参考訳): 基礎モデルに基づくエージェントのためのアーキテクチャオプションの分類:分析と決定モデル
- Authors: Jingwen Zhou, Qinghua Lu, Jieshan Chen, Liming Zhu, Xiwei Xu, Zhenchang Xing, Stefan Harrer,
- Abstract要約: 本稿では,基礎モデルに基づくエージェントのアーキテクチャに着目した分類法を提案する。
分類学は,これらの分類を統一し,詳細化することにより,基礎モデルに基づくエージェントの設計を改善することを目的としている。
- 参考スコア(独自算出の注目度): 25.78239568393706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of AI technology has led to widespread applications of agent systems across various domains. However, the need for detailed architecture design poses significant challenges in designing and operating these systems. This paper introduces a taxonomy focused on the architectures of foundation-model-based agents, addressing critical aspects such as functional capabilities and non-functional qualities. We also discuss the operations involved in both design-time and run-time phases, providing a comprehensive view of architectural design and operational characteristics. By unifying and detailing these classifications, our taxonomy aims to improve the design of foundation-model-based agents. Additionally, the paper establishes a decision model that guides critical design and runtime decisions, offering a structured approach to enhance the development of foundation-model-based agents. Our contributions include providing a structured architecture design option and guiding the development process of foundation-model-based agents, thereby addressing current fragmentation in the field.
- Abstract(参考訳): AI技術の急速な進歩により、エージェントシステムは様々な領域に広く応用されている。
しかし、詳細なアーキテクチャ設計の必要性は、これらのシステムを設計し、運用する上で大きな課題をもたらす。
本稿では,基礎モデルに基づくエージェントのアーキテクチャに着目し,機能的機能や非機能的品質といった重要な側面に対処する分類法を提案する。
また、設計時と実行時の両方のフェーズに関わる操作についても論じ、アーキテクチャ設計と運用特性の総合的なビューを提供する。
分類学は,これらの分類を統一し,詳細化することにより,基礎モデルに基づくエージェントの設計を改善することを目的としている。
さらに,重要な設計と実行時決定を導く決定モデルを確立し,基礎モデルに基づくエージェントの開発を促進するための構造的アプローチを提案する。
私たちのコントリビューションには、構造化アーキテクチャ設計オプションの提供や、ファンデーションモデルに基づくエージェントの開発プロセスの指導などが含まれます。
関連論文リスト
- Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents [22.94671478021277]
ファウンデーションモデルに対応した生成人工知能はエージェントの開発と実装を容易にする。
エージェントを設計する実践者を指導する体系的な知識が欠如している。
本稿では、文脈、力、トレードオフを分析した18のアーキテクチャパターンからなるパターンカタログを提案する。
論文 参考訳(メタデータ) (2024-05-16T23:24:48Z) - Towards Responsible Generative AI: A Reference Architecture for Designing Foundation Model based Agents [28.406492378232695]
ファンデーションモデルに基づくエージェントは、ファンデーションモデルの能力から自律性を引き出す。
本稿では,基礎モデルに基づくエージェントの設計におけるガイダンスとして機能するパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-22T04:21:47Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - A Taxonomy of Foundation Model based Systems through the Lens of
Software Architecture [35.20191493188642]
本稿では,基礎モデルと設計オプションの特徴を分類・比較する基礎モデルベースシステムの分類法を提案する。
我々の分類学は、基礎モデルの事前学習と適応、基礎モデルに基づくシステムのアーキテクチャ設計、そして責任あるAI・バイ・デザインの3つのカテゴリから構成される。
論文 参考訳(メタデータ) (2023-05-09T11:37:16Z) - A Reference Architecture for Designing Foundation Model based Systems [28.826700360670515]
ファンデーションモデルが将来のAIシステムの基本的なビルディングブロックになる、という広いコンセンサスがある。
基礎モデルをAIシステムに組み込むことは、責任と安全性に関する重要な懸念を提起する。
本稿では,基礎モデルに基づくシステム設計のためのパターン指向参照アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-13T05:01:03Z) - Intrinsic Motivation in Model-based Reinforcement Learning: A Brief
Review [77.34726150561087]
本稿では,エージェントが獲得した世界モデルに基づいて,本質的な動機付けを決定するための既存の手法について考察する。
提案した統合フレームワークは,学習を改善するために,世界モデルと本質的なモチベーションを用いてエージェントのアーキテクチャを記述する。
論文 参考訳(メタデータ) (2023-01-24T15:13:02Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
本稿では,様々な視点やレベルにまたがる参照モデルを記述するための全体論的アプローチを提案する。
メリットには、参照設計の開始時点ですでに考慮されているパフォーマンスパラメータによる、機能カバレッジのエンドツーエンドトレーサビリティが含まれる。
論文 参考訳(メタデータ) (2022-11-21T13:41:07Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z) - A Consciousness-Inspired Planning Agent for Model-Based Reinforcement
Learning [104.3643447579578]
本稿では、その状態の関連部分に動的に対応できるエンドツーエンドのモデルベース深層強化学習エージェントを提案する。
この設計により、エージェントは関連するオブジェクトに参画することで効果的に計画を学ぶことができ、配布外一般化がより良くなる。
論文 参考訳(メタデータ) (2021-06-03T19:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。