論文の概要: Understanding Ranking LLMs: A Mechanistic Analysis for Information Retrieval
- arxiv url: http://arxiv.org/abs/2410.18527v2
- Date: Sat, 22 Feb 2025 20:38:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:48:38.326692
- Title: Understanding Ranking LLMs: A Mechanistic Analysis for Information Retrieval
- Title(参考訳): ランキングLLMを理解する:情報検索のための力学解析
- Authors: Tanya Chowdhury, Atharva Nijasure, James Allan,
- Abstract要約: 我々は、LLMのランク付けにおけるニューロンの活性化を調べるために、探索に基づく分析を用いる。
本研究は,語彙信号,文書構造,問合せ文書間相互作用,複雑な意味表現など,幅広い機能カテゴリにまたがる。
我々の発見は、より透明で信頼性の高い検索システムを開発するための重要な洞察を提供する。
- 参考スコア(独自算出の注目度): 20.353393773305672
- License:
- Abstract: Transformer networks, particularly those achieving performance comparable to GPT models, are well known for their robust feature extraction abilities. However, the nature of these extracted features and their alignment with human-engineered ones remain unexplored. In this work, we investigate the internal mechanisms of state-of-the-art, fine-tuned LLMs for passage reranking. We employ a probing-based analysis to examine neuron activations in ranking LLMs, identifying the presence of known human-engineered and semantic features. Our study spans a broad range of feature categories, including lexical signals, document structure, query-document interactions, and complex semantic representations, to uncover underlying patterns influencing ranking decisions. Through experiments on four different ranking LLMs, we identify statistical IR features that are prominently encoded in LLM activations, as well as others that are notably missing. Furthermore, we analyze how these models respond to out-of-distribution queries and documents, revealing distinct generalization behaviors. By dissecting the latent representations within LLM activations, we aim to improve both the interpretability and effectiveness of ranking models. Our findings offer crucial insights for developing more transparent and reliable retrieval systems, and we release all necessary scripts and code to support further exploration.
- Abstract(参考訳): トランスフォーマーネットワーク、特にGPTモデルに匹敵する性能を達成するものは、その堅牢な特徴抽出能力で知られている。
しかし、これらの特徴の抽出の性質と人間工学的な特徴との整合性は未解明のままである。
本研究は, パス再ランク付けのための最先端, 微調整LDMの内部機構について検討する。
我々は、LLMのランク付けにおけるニューロンの活性化を調べるために、探索に基づく分析を用いて、既知のヒト工学的特徴と意味的特徴の存在を同定する。
本研究は,語彙信号,文書構造,クエリ文書間相互作用,複雑な意味表現など,幅広い機能カテゴリにまたがって,ランキング決定に影響を及ぼす基盤となるパターンを明らかにする。
4種類のLLMでの実験により,LLMアクティベーションに顕著にエンコードされている統計的IR特徴と,特に欠落している他の特徴を同定した。
さらに,これらのモデルがアウト・オブ・ディストリビューションクエリやドキュメントにどのように反応するかを分析し,異なる一般化行動を明らかにする。
LLMアクティベーション内の潜在表現を分離することにより、ランキングモデルの解釈可能性と有効性の両方を改善することを目指している。
我々の発見は、より透明で信頼性の高い検索システムを開発する上で重要な洞察を与え、さらなる探索を支援するために必要なスクリプトとコードを全てリリースする。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective [0.0]
BERTやGPTのようなトランスフォーマーベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
本稿では,これらのプール機構が文レベル感情分析の文脈における2つの著名なLCMファミリー(BERTとGPT)に与える影響について検討する。
論文 参考訳(メタデータ) (2024-11-22T00:59:25Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とLLMのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - ELF-Gym: Evaluating Large Language Models Generated Features for Tabular Prediction [33.03433653251314]
大規模言語モデル(LLM)を評価するためのフレームワークであるELF-Gymを提案する。
私たちは、トップパフォーマンスチームによって使用される251の"ゴールド"機能を含む、歴史的なKaggleコンペティションから、新たなデータセットをキュレートしました。
ベストケースのシナリオでは、LLMがゴールデン機能の約56%を意味的にキャプチャできるが、より要求の高い実装レベルでは、オーバーラップは13%に減少する。
論文 参考訳(メタデータ) (2024-10-13T13:59:33Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Hide and Seek: Fingerprinting Large Language Models with Evolutionary Learning [0.40964539027092917]
本稿では,Large Language Model (LLM) モデルの指紋認証のための新しいブラックボックス手法を提案する。
モデルの正しいファミリーを特定する際には, 72%の精度が得られた。
この研究は、LLMの振る舞いを理解するための新しい道を開き、モデル帰属、セキュリティ、そしてAI透明性の幅広い分野に重大な影響を与える。
論文 参考訳(メタデータ) (2024-08-06T00:13:10Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。