論文の概要: Data Science Principles for Interpretable and Explainable AI
- arxiv url: http://arxiv.org/abs/2405.10552v1
- Date: Fri, 17 May 2024 05:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 16:52:18.093251
- Title: Data Science Principles for Interpretable and Explainable AI
- Title(参考訳): 解釈可能で説明可能なAIのためのデータサイエンスの原則
- Authors: Kris Sankaran,
- Abstract要約: 解釈可能でインタラクティブな機械学習は、複雑なモデルをより透明で制御しやすいものにすることを目的としている。
本論は, この分野における文献の発達から重要な原則を合成するものである。
- 参考スコア(独自算出の注目度): 0.7581664835990121
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Society's capacity for algorithmic problem-solving has never been greater. Artificial Intelligence is now applied across more domains than ever, a consequence of powerful abstractions, abundant data, and accessible software. As capabilities have expanded, so have risks, with models often deployed without fully understanding their potential impacts. Interpretable and interactive machine learning aims to make complex models more transparent and controllable, enhancing user agency. This review synthesizes key principles from the growing literature in this field. We first introduce precise vocabulary for discussing interpretability, like the distinction between glass box and explainable algorithms. We then explore connections to classical statistical and design principles, like parsimony and the gulfs of interaction. Basic explainability techniques -- including learned embeddings, integrated gradients, and concept bottlenecks -- are illustrated with a simple case study. We also review criteria for objectively evaluating interpretability approaches. Throughout, we underscore the importance of considering audience goals when designing interactive algorithmic systems. Finally, we outline open challenges and discuss the potential role of data science in addressing them. Code to reproduce all examples can be found at https://go.wisc.edu/3k1ewe.
- Abstract(参考訳): アルゴリズムによる問題解決のための社会の能力は、かつてないほど大きくなった。
人工知能は、強力な抽象化、豊富なデータ、アクセス可能なソフトウェアの結果、これまで以上に多くのドメインに適用されている。
能力が拡大するにつれて、モデルが潜在的な影響を完全に理解せずにデプロイされることがしばしばあります。
解釈可能な対話型機械学習は、複雑なモデルをより透明でコントロールし、ユーザエージェンシーを強化することを目的としている。
本論は, この分野における文献の発達から重要な原則を合成するものである。
まず、ガラス箱と説明可能なアルゴリズムの区別など、解釈可能性について議論するための正確な語彙を導入する。
そして、古典的な統計学とデザインの原理、例えばパシモニーや相互作用の群れとの関係を探求する。
学習した埋め込み、統合された勾配、概念のボトルネックなど、基本的な説明可能性のテクニックは、簡単なケーススタディで説明されます。
また,解釈可能性のアプローチを客観的に評価するための基準についても検討した。
本稿では,対話型アルゴリズムシステムの設計において,オーディエンス目標を考えることの重要性を強調した。
最後に、オープンな課題の概要と、それに対応する上でのデータサイエンスが果たす役割について論じる。
すべての例を再現するコードは、https://go.wisc.edu/3k1ewe.orgにある。
関連論文リスト
- Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
画像の領域と対応するセマンティック埋め込みとをマッチングする多モード集中型ZSLフレームワークを提案する。
我々は、大規模な実世界のデータに基づいて、広範囲な実験を行い、そのモデルを評価する。
論文 参考訳(メタデータ) (2023-06-14T13:07:48Z) - Textual Explanations and Critiques in Recommendation Systems [8.406549970145846]
論文は、このニーズに対処する2つの根本的な課題に焦点を当てています。
1つ目は、スケーラブルでデータ駆動的な説明生成である。
第2の課題は、説明を実行可能なものにすることだ。
論文 参考訳(メタデータ) (2022-05-15T11:59:23Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Syntactic and Semantic-driven Learning for Open Information Extraction [42.65591370263333]
正確で高カバレッジのニューラルオープンIEシステムを構築する上で最大のボトルネックの1つは、大きなラベル付きコーパスの必要性である。
そこで本研究では,人間に反するデータを使わずにオープンなIEモデルを学習するシンタクティクスとセマンティック駆動型学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T02:59:40Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
我々は,機械が一般化可能な概念を学習する能力を調べるため,新しいデータセットであるHINT(Hand written arithmetic with INTegers)を提案する。
HINTでは、イメージなどの生信号から概念がどのように認識されるかを学ぶことが機械のタスクである。
我々は、RNN、Transformer、GPT-3など、様々なシーケンス・ツー・シーケンスモデルで広範囲に実験を行った。
論文 参考訳(メタデータ) (2021-03-02T01:32:54Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Exploiting Contextual Information with Deep Neural Networks [5.787117733071416]
文脈情報は、暗黙的かつ明示的な2つの根本的に異なる方法で活用できることを示します。
この論文では、文脈情報を2つの根本的に異なる方法で活用できることを示し、暗黙的かつ明示的に示す。
論文 参考訳(メタデータ) (2020-06-21T03:40:30Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。