RDRec: Rationale Distillation for LLM-based Recommendation
- URL: http://arxiv.org/abs/2405.10587v3
- Date: Wed, 08 Jan 2025 11:21:12 GMT
- Title: RDRec: Rationale Distillation for LLM-based Recommendation
- Authors: Xinfeng Wang, Jin Cui, Yoshimi Suzuki, Fumiyo Fukumoto,
- Abstract summary: This paper proposes a compact model designed to learn rationales generated by a larger language model (LM)<n>By leveraging rationales from reviews related to users and items, RDRec remarkably specifies their profiles for recommendations.<n> Experiments show that RDRec achieves state-of-the-art (SOTA) performance in both top-N and sequential recommendations.
- Score: 3.7623606729515133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM)-based recommender models that bridge users and items through textual prompts for effective semantic reasoning have gained considerable attention. However, few methods consider the underlying rationales behind interactions, such as user preferences and item attributes, limiting the reasoning capability of LLMs for recommendations. This paper proposes a rationale distillation recommender (RDRec), a compact model designed to learn rationales generated by a larger language model (LM). By leveraging rationales from reviews related to users and items, RDRec remarkably specifies their profiles for recommendations. Experiments show that RDRec achieves state-of-the-art (SOTA) performance in both top-N and sequential recommendations. Our source code is released at https://github.com/WangXFng/RDRec.
Related papers
- $\ ext{R}^2\ ext{ec}$: Towards Large Recommender Models with Reasoning [50.291998724376654]
We propose name, a unified large recommender model with intrinsic reasoning capabilities.<n> RecPO is a corresponding reinforcement learning framework that optimize name both the reasoning and recommendation capabilities simultaneously in a single policy update.<n> Experiments on three datasets with various baselines verify the effectiveness of name, showing relative improvements of 68.67% in Hit@5 and 45.21% in NDCG@20.
arXiv Detail & Related papers (2025-05-22T17:55:43Z) - DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation [83.21140655248624]
Large language models (LLMs) have been introduced into recommender systems (RSs)<n>We propose DeepRec, a novel LLM-based RS that enables autonomous multi-turn interactions between LLMs and TRMs for deep exploration of the item space.<n> Experiments on public datasets demonstrate that DeepRec significantly outperforms both traditional and LLM-based baselines.
arXiv Detail & Related papers (2025-05-22T15:49:38Z) - ThinkRec: Thinking-based recommendation via LLM [19.398302729633397]
ThinkRec is a thinking-based framework that shifts LLM4Rec from System 1 to System 2 (rational system)<n> ThinkRec introduces a thinking activation mechanism that augments item metadata with keyword summarization and injects synthetic reasoning traces.<n>By dynamically assigning weights to expert models based on users' latent features, ThinkRec adapts its reasoning path to individual users, thereby enhancing precision and personalization.
arXiv Detail & Related papers (2025-05-21T04:25:18Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.
Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning [15.049688896236821]
This paper presents ReasoningRec, a reasoning-based recommendation framework.
ReasoningRec bridges the gap between recommendations and human-interpretable explanations.
Empirical evaluations demonstrate that ReasoningRec surpasses state-of-the-art methods by up to 12.5% in recommendation prediction.
arXiv Detail & Related papers (2024-10-30T16:37:04Z) - Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
This paper presents an enhanced LLM-based recommender (ELMRec)
We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations.
Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
arXiv Detail & Related papers (2024-09-30T06:07:12Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - CherryRec: Enhancing News Recommendation Quality via LLM-driven Framework [4.4206696279087]
We propose a framework for news recommendation using Large Language Models (LLMs) named textitCherryRec.
CherryRec ensures the quality of recommendations while accelerating the recommendation process.
We validate the effectiveness of the proposed framework by comparing it with state-of-the-art baseline methods on benchmark datasets.
arXiv Detail & Related papers (2024-06-18T03:33:38Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - Large Language Model Augmented Narrative Driven Recommendations [51.77271767160573]
Narrative-driven recommendation (NDR) presents an information access problem where users solicit recommendations with verbose descriptions of their preferences and context.
NDR lacks abundant training data for models, and current platforms commonly do not support these requests.
We use large language models (LLMs) for data augmentation to train NDR models.
arXiv Detail & Related papers (2023-06-04T03:46:45Z) - Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation [52.62492168507781]
We propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM)
This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes.
By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations.
arXiv Detail & Related papers (2023-05-12T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.