CherryRec: Enhancing News Recommendation Quality via LLM-driven Framework
- URL: http://arxiv.org/abs/2406.12243v1
- Date: Tue, 18 Jun 2024 03:33:38 GMT
- Title: CherryRec: Enhancing News Recommendation Quality via LLM-driven Framework
- Authors: Shaohuang Wang, Lun Wang, Yunhan Bu, Tianwei Huang,
- Abstract summary: We propose a framework for news recommendation using Large Language Models (LLMs) named textitCherryRec.
CherryRec ensures the quality of recommendations while accelerating the recommendation process.
We validate the effectiveness of the proposed framework by comparing it with state-of-the-art baseline methods on benchmark datasets.
- Score: 4.4206696279087
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable progress in language understanding and generation. Custom LLMs leveraging textual features have been applied to recommendation systems, demonstrating improvements across various recommendation scenarios. However, most existing methods perform untrained recommendation based on pre-trained knowledge (e.g., movie recommendation), and the auto-regressive generation of LLMs leads to slow inference speeds, making them less effective in real-time recommendations.To address this, we propose a framework for news recommendation using LLMs, named \textit{CherryRec}, which ensures the quality of recommendations while accelerating the recommendation process. Specifically, we employ a Knowledge-aware News Rapid Selector to retrieve candidate options based on the user's interaction history. The history and retrieved items are then input as text into a fine-tuned LLM, the Content-aware News Llm Evaluator, designed to enhance news recommendation capabilities. Finally, the Value-aware News Scorer integrates the scores to compute the CherryRec Score, which serves as the basis for the final recommendation.We validate the effectiveness of the proposed framework by comparing it with state-of-the-art baseline methods on benchmark datasets. Our experimental results consistently show that CherryRec outperforms the baselines in both recommendation performance and efficiency.The project resource can be accessed at: \url{https://github.com/xxxxxx}
Related papers
- Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
This work explores adapting to dynamic user interests without any model updates.
Existing Large Language Model (LLM)-based recommenders often lose the in-context learning ability during recommendation tuning.
We propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations.
arXiv Detail & Related papers (2024-10-30T15:48:36Z) - Taxonomy-Guided Zero-Shot Recommendations with LLMs [45.81618062939684]
Large language models (LLMs) have shown promise in recommender systems (RecSys)
We propose a novel method using a taxonomy dictionary to improve the clarity and structure of item information.
TaxRec significantly enhances recommendation quality compared to traditional zero-shot approaches.
arXiv Detail & Related papers (2024-06-20T07:06:58Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - RecPrompt: A Self-tuning Prompting Framework for News Recommendation Using Large Language Models [12.28603831152324]
We introduce RecPrompt, the first self-tuning prompting framework for news recommendation.
We also introduce TopicScore, a novel metric to assess explainability.
arXiv Detail & Related papers (2023-12-16T14:42:46Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data.
GenRec uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation.
Our research underscores the potential of LLM-based generative recommendation in revolutionizing the domain of recommendation systems.
arXiv Detail & Related papers (2023-07-02T02:37:07Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.