Application of Artificial Intelligence in Schizophrenia Rehabilitation Management: A Systematic Scoping Review
- URL: http://arxiv.org/abs/2405.10883v2
- Date: Sat, 25 Jan 2025 05:18:29 GMT
- Title: Application of Artificial Intelligence in Schizophrenia Rehabilitation Management: A Systematic Scoping Review
- Authors: Hongyi Yang, Fangyuan Chang, Dian Zhu, Muroi Fumie, Zhao Liu,
- Abstract summary: This systematic review assessed the current state and future prospects of artificial intelligence (AI) in schizophrenia rehabilitation management.
We reviewed 61 studies on AI-related data types, feature engineering methods, algorithmic models, and evaluation metrics published from 2012-2024.
- Score: 4.619934969700147
- License:
- Abstract: This systematic review assessed the current state and future prospects of artificial intelligence (AI) in schizophrenia rehabilitation management. We reviewed 61 studies on AI-related data types, feature engineering methods, algorithmic models, and evaluation metrics published from 2012-2024. The review categorizes AI applications into the following key application areas: symptom monitoring, medication management, risk management, functional training, and psychosocial support. Findings indicate that supervised machine learning techniques, particularly for symptom monitoring and relapse risk management, remain the predominant approaches, effectively leveraging structured data while incorporating interpretable algorithms. This study underscores the potential of AI in transforming long-term management strategies for schizophrenia, offering valuable insights into improving the quality of life of patients. Future research should focus on expanding data sources through multimodal data integration, exploring deep learning models, and integrating AI-driven interventions into training tasks to fully capitalize on AI's potential in schizophrenia rehabilitation.
Related papers
- Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey [2.06242362470764]
Currently, there are no effective biomarkers for diagnosing Parkinson's disease, assessing its severity, or tracking its progression.
Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data.
They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness.
arXiv Detail & Related papers (2025-02-15T07:26:52Z) - Analyzing the Impact of AI Tools on Student Study Habits and Academic Performance [0.0]
The research focuses on how AI tools can support personalized learning, adaptive test adjustments, and provide real-time classroom analysis.
Student feedback revealed strong support for these features, and the study found a significant reduction in study hours alongside an increase in GPA.
Despite these benefits, challenges such as over-reliance on AI and difficulties in integrating AI with traditional teaching methods were also identified.
arXiv Detail & Related papers (2024-12-03T04:51:57Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers -- A narrative review of a growing field [0.0]
Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD.
Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness.
challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations.
arXiv Detail & Related papers (2024-06-25T09:22:53Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Unmasking Biases and Navigating Pitfalls in the Ophthalmic Artificial
Intelligence Lifecycle: A Review [3.1929071422400446]
This review article breaks down the AI lifecycle into seven steps.
Data collection; defining the model task; data pre-processing and labeling; model development; model evaluation and validation; deployment.
Finally, post-deployment evaluation, monitoring, and system recalibration and delves into the risks for harm at each step and strategies for mitigating them.
arXiv Detail & Related papers (2023-10-08T03:49:42Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
Real-world pharmaceutical datasets often exhibit highly imbalanced distribution.
We introduce ImDrug, a benchmark with an open-source Python library which consists of 4 imbalance settings, 11 AI-ready datasets, 54 learning tasks and 16 baseline algorithms tailored for imbalanced learning.
It provides an accessible and customizable testbed for problems and solutions spanning a broad spectrum of the drug discovery pipeline.
arXiv Detail & Related papers (2022-09-16T13:35:57Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.