論文の概要: A Comparative Study of Garment Draping Techniques
- arxiv url: http://arxiv.org/abs/2405.11056v1
- Date: Fri, 17 May 2024 19:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 19:36:45.757099
- Title: A Comparative Study of Garment Draping Techniques
- Title(参考訳): ガーメントドレイピング技術の比較研究
- Authors: Prerana Achar, Mayank Patel, Anushka Mulik, Neha Katre, Stevina Dias, Chirag Raman,
- Abstract要約: 本稿では,3次元ファッションデザイン,仮想試行錯誤,アニメーションなどにおいて,衣料ドレーピングの一般的な手法を評価するための比較検討を行う。
この研究は、動的に多層的な3D衣服を視覚化する研究者、デザイナー、開発者には見識を与えることができる。
- 参考スコア(独自算出の注目度): 2.8038082486377114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comparison review that evaluates popular techniques for garment draping for 3D fashion design, virtual try-ons, and animations. A comparative study is performed between various methods for garment draping of clothing over the human body. These include numerous models, such as physics and machine learning based techniques, collision handling, and more. Performance evaluations and trade-offs are discussed to ensure informed decision-making when choosing the most appropriate approach. These methods aim to accurately represent deformations and fine wrinkles of digital garments, considering the factors of data requirements, and efficiency, to produce realistic results. The research can be insightful to researchers, designers, and developers in visualizing dynamic multi-layered 3D clothing.
- Abstract(参考訳): 本稿では,3次元ファッションデザイン,仮想試行錯誤,アニメーションなどにおいて,衣料ドレーピングの一般的な手法を評価するための比較検討を行う。
衣服を人体に塗布する様々な方法の比較研究を行った。
物理や機械学習ベースのテクニック、衝突処理など、数多くのモデルが含まれている。
性能評価とトレードオフを議論し、最も適切なアプローチを選択する際に、適切な意思決定を確実にする。
これらの方法は, デジタル衣服の変形や細いしわを正確に表現し, データ要求の要因や効率を考慮し, 現実的な結果を生み出すことを目的としている。
この研究は、動的に多層的な3D衣服を視覚化する研究者、デザイナー、開発者には見識を与えることができる。
関連論文リスト
- Neural Garment Dynamics via Manifold-Aware Transformers [26.01911475040001]
我々は異なるアプローチを採り、下層の人体との局所的な相互作用を利用して衣服のダイナミクスをモデル化する。
具体的には、身体が動くと局所的な衣服と体の衝突を検出し、衣服の変形を駆動する。
我々のアプローチの核心はメッシュ非依存の衣服表現と多様体対応トランスフォーマーネットワーク設計である。
論文 参考訳(メタデータ) (2024-05-13T11:05:52Z) - Text-guided 3D Human Generation from 2D Collections [69.04031635550294]
本稿では,テクスト誘導型3Dヒューマンジェネレーション(texttT3H)について紹介する。
CCHは、抽出されたファッションセマンティクスを用いたヒューズ合成ヒトのレンダリングに、クロスモーダルアテンションを採用する。
我々はDeepFashionとSHHQで、上着と下着の形状、生地、色を多彩なファッション特性で評価する。
論文 参考訳(メタデータ) (2023-05-23T17:50:15Z) - DIG: Draping Implicit Garment over the Human Body [56.68349332089129]
暗黙の面を用いて衣服を表現するエンド・ツー・エンドの差別化可能なパイプラインを提案し, 形状を条件としたスキン場を学習し, 調音体モデルのパラメーターを推定する。
本手法により, 画像観察から身体・衣服のパラメータを復元できることがわかった。
論文 参考訳(メタデータ) (2022-09-22T08:13:59Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
この研究は、データ中心の観点から、"データエンジニアリング"における複数の重要な側面を調査します。
さまざまなポーズやテクスチャを抽出した230万以上のサンプルで、大規模な人間の画像データセットを収集し、注釈付けします。
本稿では,データサイズ,データ分布,データアライメントといった,スタイルGANに基づく人為的生成のためのデータ工学における3つの重要な要素について精査する。
論文 参考訳(メタデータ) (2022-04-25T17:55:08Z) - gDNA: Towards Generative Detailed Neural Avatars [94.9804106939663]
我々のモデルでは,多様で詳細な衣服を身に着けた自然の人間のアバターを生成できることが示されている。
本手法は,人間のモデルを生のスキャンに適合させる作業に使用することができ,従来の最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2022-01-11T18:46:38Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Self-Supervised Collision Handling via Generative 3D Garment Models for
Virtual Try-On [29.458328272854107]
本稿では,仮想試行のためのデータ駆動方式を初めて学習することのできる3次元衣服の変形生成モデルを提案する。
本手法は, 実感やディテールを損なうことなく, 被着体接触を目立たない身体形状や動作で解決した最初の方法であることを示す。
論文 参考訳(メタデータ) (2021-05-13T17:58:20Z) - Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction
from Single Images [50.34202789543989]
Deep Fashion3Dは、これまでで最大の3D衣料品のコレクションだ。
3D機能ライン、3Dボディポーズ、対応するマルチビューリアルイメージなど、リッチなアノテーションを提供する。
一つのネットワークであらゆる種類の衣服を学習できる新しい適応型テンプレートが提案されている。
論文 参考訳(メタデータ) (2020-03-28T09:20:04Z) - Fashion Landmark Detection and Category Classification for Robotics [15.134184609780924]
我々は、大規模なファッションデータセットから、ロボットラボで収集されたあまり構造化されていない小さなデータセットまでを一般化できる技術に焦点を当てる。
提案手法は, これまでに見つからなかったデータセットを用いて, 衣服カテゴリー分類やファッションランドマーク検出において, 最先端技術モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-26T10:53:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。