TVCondNet: A Conditional Denoising Neural Network for NMR Spectroscopy
- URL: http://arxiv.org/abs/2405.11064v1
- Date: Fri, 17 May 2024 19:39:15 GMT
- Title: TVCondNet: A Conditional Denoising Neural Network for NMR Spectroscopy
- Authors: Zihao Zou, Shirin Shoushtari, Jiaming Liu, Jialiang Zhang, Patrick Judge, Emilia Santana, Alison Lim, Marcus Foston, Ulugbek S. Kamilov,
- Abstract summary: This paper shows that the performance of DL denoising for NMR can be further improved by combining data-driven training with traditional TV denoising.
Our validation on experimentally collected NMR data shows the superior denoising performance and faster inference speed of TVCondNet compared to existing methods.
- Score: 10.621822462208968
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Nuclear Magnetic Resonance (NMR) spectroscopy is a widely-used technique in the fields of bio-medicine, chemistry, and biology for the analysis of chemicals and proteins. The signals from NMR spectroscopy often have low signal-to-noise ratio (SNR) due to acquisition noise, which poses significant challenges for subsequent analysis. Recent work has explored the potential of deep learning (DL) for NMR denoising, showing significant performance gains over traditional methods such as total variation (TV) denoising. This paper shows that the performance of DL denoising for NMR can be further improved by combining data-driven training with traditional TV denoising. The proposed TVCondNet method outperforms both traditional TV and DL methods by including the TV solution as a condition during DL training. Our validation on experimentally collected NMR data shows the superior denoising performance and faster inference speed of TVCondNet compared to existing methods.
Related papers
- Implicit Regression in Subspace for High-Sensitivity CEST Imaging [5.785771819376851]
Implicit Regression in Subspace (IRIS) is an unsupervised denoising algorithm utilizing the excellent property of implicit neural representation for continuous mapping.
Experiments conducted on both synthetic and in-vivo data demonstrate that our proposed method surpasses other CEST denoising methods regarding both qualitative and quantitative performance.
arXiv Detail & Related papers (2024-07-09T07:41:24Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
We propose a self-supervised denoising method for MRI denoising using diffusion denoising generative models.
Our framework integrates statistic-based denoising theory into diffusion models and performs denoising through conditional generation.
arXiv Detail & Related papers (2023-02-06T18:56:39Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
We propose a Fully Convolutional Denoising Autoencoder, which learns to produce a clean neuronal activity signal from a noisy multichannel input.
The experimental results on simulated data show that our proposed method can improve significantly the quality of noise-corrupted neural signals.
arXiv Detail & Related papers (2021-09-18T14:51:24Z) - Denoising Single Voxel Magnetic Resonance Spectroscopy with Deep
Learning on Repeatedly Sampled In Vivo Data [17.291672952879022]
MRS is a noninvasive tool to reveal metabolic information.
One challenge of MRS is the relatively low Signal-Noise Ratio (SNR) due to low concentrations of metabolites.
Deep learning denoising approach is proposed to learn a mapping from the low SNR signal to the high SNR one.
arXiv Detail & Related papers (2021-01-26T05:36:44Z) - Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis [23.11994688706024]
We propose a discrete wavelet denoising CNN (WDnCNN) which restores images corrupted by various noise with a single model.
To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum.
We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers.
arXiv Detail & Related papers (2020-06-28T05:25:50Z) - Correlated noise in Brownian motion allows for super resolution [0.0]
Diffusion broadening of spectral lines is the main limitation to frequency resolution in non-polarized liquid state nano-NMR.
In this work we show that in the NV based nano-NMR setup such diffusion noise results in high spectral resolution.
arXiv Detail & Related papers (2020-05-17T19:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.