論文の概要: Identifying and Aligning Medical Claims Made on Social Media with Medical Evidence
- arxiv url: http://arxiv.org/abs/2405.11219v1
- Date: Sat, 18 May 2024 07:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 18:48:01.296997
- Title: Identifying and Aligning Medical Claims Made on Social Media with Medical Evidence
- Title(参考訳): 医療エビデンスを用いたソーシャルメディア上での医療クレームの特定とアライメント
- Authors: Anthony Hughes, Xingyi Song,
- Abstract要約: 医療クレームの特定、これらのクレームからの医療語彙の抽出、特定された医療クレームに関連する証拠の検索という3つの中核課題について検討する。
本稿では,これらの中核的タスクをそれぞれ支援するために,合成医療クレームを生成できる新しいシステムを提案する。
- 参考スコア(独自算出の注目度): 0.12277343096128711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evidence-based medicine is the practice of making medical decisions that adhere to the latest, and best known evidence at that time. Currently, the best evidence is often found in the form of documents, such as randomized control trials, meta-analyses and systematic reviews. This research focuses on aligning medical claims made on social media platforms with this medical evidence. By doing so, individuals without medical expertise can more effectively assess the veracity of such medical claims. We study three core tasks: identifying medical claims, extracting medical vocabulary from these claims, and retrieving evidence relevant to those identified medical claims. We propose a novel system that can generate synthetic medical claims to aid each of these core tasks. We additionally introduce a novel dataset produced by our synthetic generator that, when applied to these tasks, demonstrates not only a more flexible and holistic approach, but also an improvement in all comparable metrics. We make our dataset, the Expansive Medical Claim Corpus (EMCC), available at https://zenodo.org/records/8321460
- Abstract(参考訳): エビデンスベースの医療は、当時の最新の最もよく知られた証拠に準拠する医療決定を行う実践である。
現在、最も優れた証拠は、ランダム化制御試験、メタ分析、体系的なレビューなど、文書の形でしばしば見られる。
本研究は,ソーシャルメディアプラットフォーム上での医療的主張と,この医療的証拠との整合性に着目したものである。
これにより、医療の専門知識を持たない個人は、そのような医療的クレームの正確性をより効果的に評価することができる。
医療クレームの特定、これらのクレームからの医療語彙の抽出、特定された医療クレームに関連する証拠の検索という3つの中核課題について検討する。
本稿では,これらの中核的タスクをそれぞれ支援するために,合成医療クレームを生成できる新しいシステムを提案する。
さらに、これらのタスクに適用すると、より柔軟で包括的なアプローチだけでなく、同等のメトリクスの改善を示す新しいデータセットも導入します。
データセットであるEMCC(Expansive Medical Claim Corpus)をhttps://zenodo.org/records/8321460で公開しています。
関連論文リスト
- AutoMIR: Effective Zero-Shot Medical Information Retrieval without Relevance Labels [19.90354530235266]
本稿では,自己学習仮説文書埋め込み (SL-HyDE) という新しい手法を導入し,この問題に対処する。
SL-HyDEは、与えられたクエリに基づいて仮説文書を生成するために、大きな言語モデル(LLM)をジェネレータとして利用する。
実世界の医療シナリオを基盤とした総合的な評価フレームワークとして,中国医療情報検索ベンチマーク(CMIRB)を提案する。
論文 参考訳(メタデータ) (2024-10-26T02:53:20Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - Comparing Knowledge Sources for Open-Domain Scientific Claim
Verification [6.726255259929497]
PubMedは特殊なバイオメディカルクレームとうまく連携するが、Wikipediaは日常的な健康問題に向いている。
結果について議論し、頻繁な検索パターンと課題を概説し、将来有望な方向性を提供する。
論文 参考訳(メタデータ) (2024-02-05T09:57:15Z) - Yes, this is what I was looking for! Towards Multi-modal Medical
Consultation Concern Summary Generation [46.42604861624895]
マルチモーダル・メディカル・コンシューム・サマリ・ジェネレーションの新しい課題を提案する。
患者のジェスチャーや表情などの非言語的手がかりは、患者の懸念を正確に識別するのに役立つ。
マルチモーダル・メディカル・コンシューム・サマリー・ジェネレーション・コーパスを構築。
論文 参考訳(メタデータ) (2024-01-10T12:56:47Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - HealthFC: Verifying Health Claims with Evidence-Based Medical Fact-Checking [5.065947993017158]
HealthFCは、ドイツ語と英語で750件の健康関連クレームのデータセットで、医療専門家による正確さをラベル付けしている。
データセットの分析を行い、その特性と課題を強調します。
データセットは、将来の使用の可能性が高い、挑戦的なテストベッドであることを示す。
論文 参考訳(メタデータ) (2023-09-15T16:05:48Z) - Effective Medical Code Prediction via Label Internal Alignment [2.538209532048867]
臨床用テキストから医療用コードを予測するために,多視点アテンションに基づくニューラルネットワークを提案する。
提案手法は,オープンソースデータセット上で有効であることが確認された。
論文 参考訳(メタデータ) (2023-05-09T04:14:20Z) - Survey on Adversarial Attack and Defense for Medical Image Analysis: Methods and Challenges [64.63744409431001]
医療画像解析における敵攻撃・防衛の進歩に関する総合的な調査を報告する。
公正な比較のために、逆向きに堅牢な診断モデルのための新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2023-03-24T16:38:58Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
医薬推奨は、患者の診断に従って適切な薬セットを提供することを目標としており、これは診療所において重要な課題である。
医薬品群を生成するための新しいコピー・アンド・予測機構を導入した条件生成ネット(COGNet)を提案する。
提案手法を公開MIMICデータセット上で検証し,実験結果から,提案手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-02-14T10:16:41Z) - Evidence Inference 2.0: More Data, Better Models [22.53884716373888]
Evidence Inferenceデータセットは、この目的に向けた研究を促進するために最近リリースされた。
本稿では、エビデンス推論データセットを25%拡張するための追加アノテーションを収集する。
新しいベースラインと評価のための更新されたコーパス、ドキュメント、コードはhttp://evidence-inference.ebm-nlp.com/で公開されている。
論文 参考訳(メタデータ) (2020-05-08T17:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。