論文の概要: Evidence Inference 2.0: More Data, Better Models
- arxiv url: http://arxiv.org/abs/2005.04177v2
- Date: Thu, 14 May 2020 14:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 12:32:57.924039
- Title: Evidence Inference 2.0: More Data, Better Models
- Title(参考訳): Evidence Inference 2.0: より多くのデータ、より良いモデル
- Authors: Jay DeYoung, Eric Lehman, Ben Nye, Iain J. Marshall, Byron C. Wallace
- Abstract要約: Evidence Inferenceデータセットは、この目的に向けた研究を促進するために最近リリースされた。
本稿では、エビデンス推論データセットを25%拡張するための追加アノテーションを収集する。
新しいベースラインと評価のための更新されたコーパス、ドキュメント、コードはhttp://evidence-inference.ebm-nlp.com/で公開されている。
- 参考スコア(独自算出の注目度): 22.53884716373888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How do we most effectively treat a disease or condition? Ideally, we could
consult a database of evidence gleaned from clinical trials to answer such
questions. Unfortunately, no such database exists; clinical trial results are
instead disseminated primarily via lengthy natural language articles. Perusing
all such articles would be prohibitively time-consuming for healthcare
practitioners; they instead tend to depend on manually compiled systematic
reviews of medical literature to inform care.
NLP may speed this process up, and eventually facilitate immediate consult of
published evidence. The Evidence Inference dataset was recently released to
facilitate research toward this end. This task entails inferring the
comparative performance of two treatments, with respect to a given outcome,
from a particular article (describing a clinical trial) and identifying
supporting evidence. For instance: Does this article report that chemotherapy
performed better than surgery for five-year survival rates of operable cancers?
In this paper, we collect additional annotations to expand the Evidence
Inference dataset by 25\%, provide stronger baseline models, systematically
inspect the errors that these make, and probe dataset quality. We also release
an abstract only (as opposed to full-texts) version of the task for rapid model
prototyping. The updated corpus, documentation, and code for new baselines and
evaluations are available at http://evidence-inference.ebm-nlp.com/.
- Abstract(参考訳): 病気や病態をどのように効果的に扱うか。
理想的には、そのような質問に答えるために臨床試験から得られた証拠のデータベースを参考にすることができる。
残念なことに、そのようなデータベースは存在しない。臨床試験の結果は、主に長い自然言語記事を通じて散布される。
これらの記事はすべて、医療従事者にとって違法に時間がかかり、代わりに、手作業による医療文献の体系的なレビューに頼っている。
NLPはこのプロセスをスピードアップし、最終的に公表された証拠の即時調査を促進する可能性がある。
Evidence Inferenceデータセットは、この目的に向けた研究を促進するために最近リリースされた。
本課題は、特定の記事(臨床試験を記述している)から、所定の結果に関する2つの治療の比較パフォーマンスを推測し、支持する証拠を特定することを含む。
例えば, 本報告では5年生存率の手術よりも化学療法が有効であったか。
本稿では,エビデンス推論データセットを25\%拡張し,より強固なベースラインモデルを提供し,それらのエラーを体系的に検査し,データセットの品質を調査するための追加アノテーションを収集する。
また、高速なモデルプロトタイピングのためのタスクの抽象的なバージョン(フルテキストとは対照的に)もリリースします。
新しいベースラインと評価のための更新されたコーパス、ドキュメント、コードは、http://evidence-inference.ebm-nlp.com/で入手できる。
関連論文リスト
- Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
大規模言語モデル(LLM)は、医療における自然言語生成の約束を示すが、事実的に誤った情報を幻覚させるリスクがある。
医学的問合せデータセットのモデルサイズが異なる人気不確実性推定(UE)手法をベンチマークする。
以上の結果から,本領域における現在のアプローチは,医療応用におけるUEの課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-07-11T16:51:33Z) - Identifying and Aligning Medical Claims Made on Social Media with Medical Evidence [0.12277343096128711]
医療クレームの特定、これらのクレームからの医療語彙の抽出、特定された医療クレームに関連する証拠の検索という3つの中核課題について検討する。
本稿では,これらの中核的タスクをそれぞれ支援するために,合成医療クレームを生成できる新しいシステムを提案する。
論文 参考訳(メタデータ) (2024-05-18T07:50:43Z) - NLI4CT: Multi-Evidence Natural Language Inference for Clinical Trial
Reports [3.0468533447146244]
臨床治験報告に基づくNLI研究の進展に向けた新たな資料を提示する。
NLI4CTは2400の文とCTRからなるコーパスで、これらのタスクに注釈を付ける。
私たちの知る限りでは、私たちは完全なCTRの解釈をカバーするタスクを最初に設計しました。
論文 参考訳(メタデータ) (2023-05-05T15:03:01Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - MS2: Multi-Document Summarization of Medical Studies [11.38740406132287]
MS2(Multi-Document Summarization of Medical Studies)は、科学文献から得られた470k以上の文書と20kの要約からなるデータセットです。
このデータセットは、矛盾する証拠を複数の研究で評価し集約するシステムの開発を促進する。
早期成果を期待して,BARTに基づく要約システムを実験した。
論文 参考訳(メタデータ) (2021-04-13T19:59:34Z) - CREATe: Clinical Report Extraction and Annotation Technology [53.731999072534876]
臨床症例報告は、特定の臨床症例の特異な側面を記述した記述である。
これらのレポートを注釈付け、インデックス付け、あるいはキュレートするエンドツーエンドシステムを開発する試みはない。
本稿では,新たな計算資源プラットフォームを提案し,臨床事例レポートの内容の抽出,索引付け,照会を行う。
論文 参考訳(メタデータ) (2021-02-28T16:50:14Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
Google Cloudを使って、NPRラジオ番組のポッドキャストのエピソードを書き起こします。
次に、テキストを体系的に前処理するためのパイプラインを構築します。
我々のモデルは、Omeprazoleが心臓熱傷の治療に役立てることに成功しました。
論文 参考訳(メタデータ) (2020-10-22T19:52:49Z) - Understanding Clinical Trial Reports: Extracting Medical Entities and
Their Relations [33.30381080306156]
医療専門家は、意思決定を知らせるために、手動で記事から情報を取り出す必要がある。
本研究は, (a) 臨床試験を記載した全文記事から治療結果と成果を抽出し, (b) 後者に関して, 前者に対して報告された結果の推測を行うことの両目的について考察する。
論文 参考訳(メタデータ) (2020-10-07T17:50:58Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Extracting Structured Data from Physician-Patient Conversations By
Predicting Noteworthy Utterances [39.888619005843246]
本稿では,会話の書き起こし,ビジット後要約,対応する証拠(転写文),構造化ラベルからなる新しいデータセットについて述べる。
方法論的な課題の1つは、会話が長く(約1500語)、現代のディープラーニングモデルではそれらを入力として使うのが難しいことである。
予測音声を初めてフィルタリングすることにより,診断とRoS異常の両方を認識するための予測性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。