The Power of Active Multi-Task Learning in Reinforcement Learning from Human Feedback
- URL: http://arxiv.org/abs/2405.11226v1
- Date: Sat, 18 May 2024 08:29:15 GMT
- Title: The Power of Active Multi-Task Learning in Reinforcement Learning from Human Feedback
- Authors: Ruitao Chen, Liwei Wang,
- Abstract summary: Reinforcement learning from human feedback has contributed to performance improvements in large language models.
We formulate RLHF as the contextual dueling bandit problem and assume a common linear representation.
We prove that to achieve $varepsilon-$optimal, the sample complexity of the source tasks can be significantly reduced.
- Score: 12.388205905012423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has contributed to performance improvements in large language models. To tackle its reliance on substantial amounts of human-labeled data, a successful approach is multi-task representation learning, which involves learning a high-quality, low-dimensional representation from a wide range of source tasks. In this paper, we formulate RLHF as the contextual dueling bandit problem and assume a common linear representation. We demonstrate that the sample complexity of source tasks in multi-task RLHF can be reduced by considering task relevance and allocating different sample sizes to source tasks with varying task relevance. We further propose an algorithm to estimate task relevance by a small number of additional data and then learn a policy. We prove that to achieve $\varepsilon-$optimal, the sample complexity of the source tasks can be significantly reduced compared to uniform sampling. Additionally, the sample complexity of the target task is only linear in the dimension of the latent space, thanks to representation learning.
Related papers
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures has been shown to yield significant benefits to the sample efficiency compared to single-task RL.
We investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs)
We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSR
arXiv Detail & Related papers (2023-10-20T14:50:28Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
arXiv Detail & Related papers (2023-03-25T23:16:11Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
Multitask learning assumes that models capable of learning from multiple tasks can achieve better quality and efficiency via knowledge transfer.
State of the art ML models rely on high customization for each task and leverage size and data scale rather than scaling the number of tasks.
We propose an evolutionary method that can generate a large scale multitask model and can support the dynamic and continuous addition of new tasks.
arXiv Detail & Related papers (2022-05-25T13:10:47Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.